build_supernet.py 8.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from copy import deepcopy

from lib.utils.builder_util import modify_block_args
from lib.models.blocks import get_Bottleneck, InvertedResidual

from timm.models.efficientnet_blocks import *

from nni.nas.pytorch import mutables

class SuperNetBuilder:
    """ Build Trunk Blocks
    """

    def __init__(
            self,
            choices,
            channel_multiplier=1.0,
            channel_divisor=8,
            channel_min=None,
            output_stride=32,
            pad_type='',
            act_layer=None,
            se_kwargs=None,
            norm_layer=nn.BatchNorm2d,
            norm_kwargs=None,
            drop_path_rate=0.,
            feature_location='',
            verbose=False,
            resunit=False,
            dil_conv=False,
            logger=None):

        # dict
        # choices = {'kernel_size': [3, 5, 7], 'exp_ratio': [4, 6]}
        self.choices = [[x, y] for x in choices['kernel_size']
                        for y in choices['exp_ratio']]
        self.choices_num = len(self.choices) - 1
        self.channel_multiplier = channel_multiplier
        self.channel_divisor = channel_divisor
        self.channel_min = channel_min
        self.output_stride = output_stride
        self.pad_type = pad_type
        self.act_layer = act_layer
        self.se_kwargs = se_kwargs
        self.norm_layer = norm_layer
        self.norm_kwargs = norm_kwargs
        self.drop_path_rate = drop_path_rate
        self.feature_location = feature_location
        assert feature_location in ('pre_pwl', 'post_exp', '')
        self.verbose = verbose
        self.resunit = resunit
        self.dil_conv = dil_conv
        self.logger = logger

        # state updated during build, consumed by model
        self.in_chs = None

    def _round_channels(self, chs):
        return round_channels(
            chs,
            self.channel_multiplier,
            self.channel_divisor,
            self.channel_min)

    def _make_block(
            self,
            ba,
            choice_idx,
            block_idx,
            block_count,
            resunit=False,
            dil_conv=False):
        drop_path_rate = self.drop_path_rate * block_idx / block_count
        bt = ba.pop('block_type')
        ba['in_chs'] = self.in_chs
        ba['out_chs'] = self._round_channels(ba['out_chs'])
        if 'fake_in_chs' in ba and ba['fake_in_chs']:
            # FIXME this is a hack to work around mismatch in origin impl input
            # filters
            ba['fake_in_chs'] = self._round_channels(ba['fake_in_chs'])
        ba['norm_layer'] = self.norm_layer
        ba['norm_kwargs'] = self.norm_kwargs
        ba['pad_type'] = self.pad_type
        # block act fn overrides the model default
        ba['act_layer'] = ba['act_layer'] if ba['act_layer'] is not None else self.act_layer
        assert ba['act_layer'] is not None
        if bt == 'ir':
            ba['drop_path_rate'] = drop_path_rate
            ba['se_kwargs'] = self.se_kwargs
            if self.verbose:
                self.logger.info(
                    '  InvertedResidual {}, Args: {}'.format(
                        block_idx, str(ba)))
            block = InvertedResidual(**ba)
        elif bt == 'ds' or bt == 'dsa':
            ba['drop_path_rate'] = drop_path_rate
            ba['se_kwargs'] = self.se_kwargs
            if self.verbose:
                self.logger.info(
                    '  DepthwiseSeparable {}, Args: {}'.format(
                        block_idx, str(ba)))
            block = DepthwiseSeparableConv(**ba)
        elif bt == 'cn':
            if self.verbose:
                self.logger.info(
                    '  ConvBnAct {}, Args: {}'.format(
                        block_idx, str(ba)))
            block = ConvBnAct(**ba)
        else:
            assert False, 'Uknkown block type (%s) while building model.' % bt
        if choice_idx == self.choice_num - 1:
            self.in_chs = ba['out_chs']  # update in_chs for arg of next block

        return block

    def __call__(self, in_chs, model_block_args):
        """ Build the blocks
        Args:
            in_chs: Number of input-channels passed to first block
            model_block_args: A list of lists, outer list defines stages, inner
                list contains strings defining block configuration(s)
        Return:
             List of block stacks (each stack wrapped in nn.Sequential)
        """
        if self.verbose:
            logging.info('Building model trunk with %d stages...' % len(model_block_args))
        self.in_chs = in_chs
        total_block_count = sum([len(x) for x in model_block_args])
        total_block_idx = 0
        current_stride = 2
        current_dilation = 1
        feature_idx = 0
        stages = []
        # outer list of block_args defines the stacks ('stages' by some conventions)
        for stage_idx, stage_block_args in enumerate(model_block_args):
            last_stack = stage_idx == (len(model_block_args) - 1)
            if self.verbose:
                self.logger.info('Stack: {}'.format(stage_idx))
            assert isinstance(stage_block_args, list)

            # blocks = []
            # each stack (stage) contains a list of block arguments
            for block_idx, block_args in enumerate(stage_block_args):
                last_block = block_idx == (len(stage_block_args) - 1)
                if self.verbose:
                    self.logger.info(' Block: {}'.format(block_idx))

                # Sort out stride, dilation, and feature extraction details
                assert block_args['stride'] in (1, 2)
                if block_idx >= 1:
                    # only the first block in any stack can have a stride > 1
                    block_args['stride'] = 1

                next_dilation = current_dilation
                if block_args['stride'] > 1:
                    next_output_stride = current_stride * block_args['stride']
                    if next_output_stride > self.output_stride:
                        next_dilation = current_dilation * block_args['stride']
                        block_args['stride'] = 1
                    else:
                        current_stride = next_output_stride
                block_args['dilation'] = current_dilation
                if next_dilation != current_dilation:
                    current_dilation = next_dilation


                if stage_idx==0 or stage_idx==6:
                    self.choice_num = 1
                else:
                    self.choice_num = len(self.choices)

                    if self.dil_conv:
                        self.choice_num += 2

                choice_blocks = []
                block_args_copy = deepcopy(block_args)
                if self.choice_num == 1:
                    # create the block
                    block = self._make_block(block_args, 0, total_block_idx, total_block_count)
                    choice_blocks.append(block)
                else:
                    for choice_idx, choice in enumerate(self.choices):
                        # create the block
                        block_args = deepcopy(block_args_copy)
                        block_args = modify_block_args(block_args, choice[0], choice[1])
                        block = self._make_block(block_args, choice_idx, total_block_idx, total_block_count)
                        choice_blocks.append(block)
                    if self.dil_conv:
                        block_args = deepcopy(block_args_copy)
                        block_args = modify_block_args(block_args, 3, 0)
                        block = self._make_block(block_args, self.choice_num - 2, total_block_idx, total_block_count,
                                                 resunit=self.resunit, dil_conv=self.dil_conv)
                        choice_blocks.append(block)

                        block_args = deepcopy(block_args_copy)
                        block_args = modify_block_args(block_args, 5, 0)
                        block = self._make_block(block_args, self.choice_num - 1, total_block_idx, total_block_count,
                                                 resunit=self.resunit, dil_conv=self.dil_conv)
                        choice_blocks.append(block)

                    if self.resunit:
                        block = get_Bottleneck(block.conv_pw.in_channels,
                                               block.conv_pwl.out_channels,
                                               block.conv_dw.stride[0])
                        choice_blocks.append(block)

                choice_block = mutables.LayerChoice(choice_blocks)
                stages.append(choice_block)
                # create the block
                # block = self._make_block(block_args, total_block_idx, total_block_count)
                total_block_idx += 1  # incr global block idx (across all stacks)

            # stages.append(blocks)
        return stages