search.py 2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
import os
import random
import time

import numpy as np
import torch
import torch.nn as nn

import utils
from config import SearchConfig
from datasets.cifar import get_search_datasets
from model import Model
colorjam's avatar
colorjam committed
17
from nni.algorithms.nas.pytorch.cdarts import CdartsTrainer
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

if __name__ == "__main__":
    config = SearchConfig()
    main_proc = not config.distributed or config.local_rank == 0
    if config.distributed:
        torch.cuda.set_device(config.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method=config.dist_url,
                                             rank=config.local_rank, world_size=config.world_size)
    if main_proc:
        os.makedirs(config.output_path, exist_ok=True)
    if config.distributed:
        torch.distributed.barrier()
    logger = utils.get_logger(os.path.join(config.output_path, 'search.log'))
    if main_proc:
        config.print_params(logger.info)
    utils.reset_seed(config.seed)

    loaders, samplers = get_search_datasets(config)
    model_small = Model(config.dataset, 8).cuda()
    if config.share_module:
        model_large = Model(config.dataset, 20, shared_modules=model_small.shared_modules).cuda()
    else:
        model_large = Model(config.dataset, 20).cuda()

    criterion = nn.CrossEntropyLoss()
    trainer = CdartsTrainer(model_small, model_large, criterion, loaders, samplers, logger,
                            config.regular_coeff, config.regular_ratio, config.warmup_epochs, config.fix_head,
                            config.epochs, config.steps_per_epoch, config.loss_alpha, config.loss_T, config.distributed,
                            config.log_frequency, config.grad_clip, config.interactive_type, config.output_path,
                            config.w_lr, config.w_momentum, config.w_weight_decay, config.alpha_lr, config.alpha_weight_decay,
                            config.nasnet_lr, config.local_rank, config.share_module)
    trainer.train()