pruning_bert_glue.rst 31.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/pruning_bert_glue.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_pruning_bert_glue.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_pruning_bert_glue.py:


Pruning Transformer with NNI
============================

Workable Pruning Process
------------------------

Here we show an effective transformer pruning process that NNI team has tried, and users can use NNI to discover better processes.

The entire pruning process can be divided into the following steps:

1. Finetune the pre-trained model on the downstream task. From our experience,
   the final performance of pruning on the finetuned model is better than pruning directly on the pre-trained model.
   At the same time, the finetuned model obtained in this step will also be used as the teacher model for the following
   distillation training.
2. Pruning the attention layer at first. Here we apply block-sparse on attention layer weight,
   and directly prune the head (condense the weight) if the head was fully masked.
   If the head was partially masked, we will not prune it and recover its weight.
3. Retrain the head-pruned model with distillation. Recover the model precision before pruning FFN layer.
4. Pruning the FFN layer. Here we apply the output channels pruning on the 1st FFN layer,
   and the 2nd FFN layer input channels will be pruned due to the pruning of 1st layer output channels.
5. Retrain the final pruned model with distillation.

During the process of pruning transformer, we gained some of the following experiences:

* We using :ref:`movement-pruner` in step 2 and :ref:`taylor-fo-weight-pruner` in step 4. :ref:`movement-pruner` has good performance on attention layers,
  and :ref:`taylor-fo-weight-pruner` method has good performance on FFN layers. These two pruners are all some kinds of gradient-based pruning algorithms,
  we also try weight-based pruning algorithms like :ref:`l1-norm-pruner`, but it doesn't seem to work well in this scenario.
* Distillation is a good way to recover model precision. In terms of results, usually 1~2% improvement in accuracy can be achieved when we prune bert on mnli task.
* It is necessary to gradually increase the sparsity rather than reaching a very high sparsity all at once.

Experiment
----------

Preparation
^^^^^^^^^^^
Please set ``dev_mode`` to ``False`` to run this tutorial. Here ``dev_mode`` is ``True`` by default is for generating documents.

The complete pruning process takes about 8 hours on one A100.

.. GENERATED FROM PYTHON SOURCE LINES 41-44

.. code-block:: default


    dev_mode = True








.. GENERATED FROM PYTHON SOURCE LINES 45-46

Some basic setting.

.. GENERATED FROM PYTHON SOURCE LINES 46-72

.. code-block:: default


    from pathlib import Path
    from typing import Callable

    pretrained_model_name_or_path = 'bert-base-uncased'
    task_name = 'mnli'
    experiment_id = 'pruning_bert'

    # heads_num and layers_num should align with pretrained_model_name_or_path
    heads_num = 12
    layers_num = 12

    # used to save the experiment log
    log_dir = Path(f'./pruning_log/{pretrained_model_name_or_path}/{task_name}/{experiment_id}')
    log_dir.mkdir(parents=True, exist_ok=True)

    # used to save the finetuned model and share between different experiemnts with same pretrained_model_name_or_path and task_name
    model_dir = Path(f'./models/{pretrained_model_name_or_path}/{task_name}')
    model_dir.mkdir(parents=True, exist_ok=True)

    from transformers import set_seed
    set_seed(1024)

    import torch
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')








.. GENERATED FROM PYTHON SOURCE LINES 73-75

The function used to create dataloaders, note that 'mnli' has two evaluation dataset.
If teacher_model is set, will run all dataset on teacher model to get the 'teacher_logits' for distillation.

.. GENERATED FROM PYTHON SOURCE LINES 75-157

.. code-block:: default


    from torch.utils.data import DataLoader

    from datasets import load_dataset
    from transformers import BertTokenizerFast, DataCollatorWithPadding

    task_to_keys = {
        'cola': ('sentence', None),
        'mnli': ('premise', 'hypothesis'),
        'mrpc': ('sentence1', 'sentence2'),
        'qnli': ('question', 'sentence'),
        'qqp': ('question1', 'question2'),
        'rte': ('sentence1', 'sentence2'),
        'sst2': ('sentence', None),
        'stsb': ('sentence1', 'sentence2'),
        'wnli': ('sentence1', 'sentence2'),
    }

    def prepare_data(cache_dir='./data', train_batch_size=32, eval_batch_size=32,
                        teacher_model: torch.nn.Module = None):
        tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path)
        sentence1_key, sentence2_key = task_to_keys[task_name]
        data_collator = DataCollatorWithPadding(tokenizer)

        # used to preprocess the raw data
        def preprocess_function(examples):
            # Tokenize the texts
            args = (
                (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
            )
            result = tokenizer(*args, padding=False, max_length=128, truncation=True)

            if 'label' in examples:
                # In all cases, rename the column to labels because the model will expect that.
                result['labels'] = examples['label']
            return result

        raw_datasets = load_dataset('glue', task_name, cache_dir=cache_dir)
        for key in list(raw_datasets.keys()):
            if 'test' in key:
                raw_datasets.pop(key)

        processed_datasets = raw_datasets.map(preprocess_function, batched=True,
                                                remove_columns=raw_datasets['train'].column_names)

        # if has teacher model, add 'teacher_logits' to datasets who has 'labels'.
        # 'teacher_logits' is used for distillation and avoid the double counting.
        if teacher_model:
            teacher_model_training = teacher_model.training
            teacher_model.eval()
            model_device = next(teacher_model.parameters()).device

            def add_teacher_logits(examples):
                result = {k: v for k, v in examples.items()}
                samples = data_collator(result).to(model_device)
                if 'labels' in samples:
                    with torch.no_grad():
                        logits = teacher_model(**samples).logits.tolist()
                    result['teacher_logits'] = logits
                return result

            processed_datasets = processed_datasets.map(add_teacher_logits, batched=True,
                                                        batch_size=train_batch_size)
            teacher_model.train(teacher_model_training)

        train_dataset = processed_datasets['train']
        validation_dataset = processed_datasets['validation_matched' if task_name == 'mnli' else 'validation']
        validation_dataset2 = processed_datasets['validation_mismatched'] if task_name == 'mnli' else None

        train_dataloader = DataLoader(train_dataset,
                                        shuffle=True,
                                        collate_fn=data_collator,
                                        batch_size=train_batch_size)
        validation_dataloader = DataLoader(validation_dataset,
                                            collate_fn=data_collator,
                                            batch_size=eval_batch_size)
        validation_dataloader2 = DataLoader(validation_dataset2,
                                            collate_fn=data_collator,
                                            batch_size=eval_batch_size) if task_name == 'mnli' else None

        return train_dataloader, validation_dataloader, validation_dataloader2








.. GENERATED FROM PYTHON SOURCE LINES 158-159

Training function & evaluation function.

.. GENERATED FROM PYTHON SOURCE LINES 159-258

.. code-block:: default


    import time
    import torch.nn.functional as F
    from datasets import load_metric

    def training(train_dataloader: DataLoader,
                    model: torch.nn.Module,
                    optimizer: torch.optim.Optimizer,
                    criterion: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
                    lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
                    max_steps: int = None, max_epochs: int = None,
                    save_best_model: bool = False, save_path: str = None,
                    log_path: str = Path(log_dir) / 'training.log',
                    distillation: bool = False,
                    evaluation_func=None):
        model.train()
        current_step = 0
        best_result = 0

        for current_epoch in range(max_epochs if max_epochs else 1):
            for batch in train_dataloader:
                batch.to(device)
                teacher_logits = batch.pop('teacher_logits', None)
                optimizer.zero_grad()
                outputs = model(**batch)
                loss = outputs.loss

                if distillation:
                    assert teacher_logits is not None
                    distil_loss = F.kl_div(F.log_softmax(outputs.logits / 2, dim=-1),
                                            F.softmax(teacher_logits / 2, dim=-1), reduction='batchmean') * (2 ** 2)
                    loss = 0.1 * loss + 0.9 * distil_loss

                loss = criterion(loss, None)
                loss.backward()
                optimizer.step()

                if lr_scheduler:
                    lr_scheduler.step()

                current_step += 1

                # evaluation for every 1000 steps
                if current_step % 1000 == 0 or current_step % len(train_dataloader) == 0:
                    result = evaluation_func(model) if evaluation_func else None
                    with (log_path).open('a+') as f:
                        msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())), current_epoch, current_step, result)
                        f.write(msg)
                    # if it's the best model, save it.
                    if save_best_model and best_result < result['default']:
                        assert save_path is not None
                        torch.save(model.state_dict(), save_path)
                        best_result = result['default']

                if max_steps and current_step >= max_steps:
                    return

    def evaluation(validation_dataloader: DataLoader,
                    validation_dataloader2: DataLoader,
                    model: torch.nn.Module):
        training = model.training
        model.eval()
        is_regression = task_name == 'stsb'
        metric = load_metric('glue', task_name)

        for batch in validation_dataloader:
            batch.pop('teacher_logits', None)
            batch.to(device)
            outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
            metric.add_batch(
                predictions=predictions,
                references=batch['labels'],
            )
        result = metric.compute()

        if validation_dataloader2:
            for batch in validation_dataloader2:
                batch.pop('teacher_logits', None)
                batch.to(device)
                outputs = model(**batch)
                predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
                metric.add_batch(
                    predictions=predictions,
                    references=batch['labels'],
                )
            result = {'matched': result, 'mismatched': metric.compute()}
            result['default'] = (result['matched']['accuracy'] + result['mismatched']['accuracy']) / 2
        else:
            result['default'] = result.get('f1', result.get('accuracy', None))

        model.train(training)
        return result

    # using huggingface native loss
    def fake_criterion(outputs, targets):
        return outputs









.. GENERATED FROM PYTHON SOURCE LINES 259-260

Prepare pre-trained model and finetuning on downstream task.

.. GENERATED FROM PYTHON SOURCE LINES 260-299

.. code-block:: default


    import functools

    from torch.optim import Adam
    from torch.optim.lr_scheduler import LambdaLR
    from transformers import BertForSequenceClassification

    def create_pretrained_model():
        is_regression = task_name == 'stsb'
        num_labels = 1 if is_regression else (3 if task_name == 'mnli' else 2)
        return BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, num_labels=num_labels)

    def create_finetuned_model():
        pretrained_model = create_pretrained_model().to(device)

        train_dataloader, validation_dataloader, validation_dataloader2 = prepare_data()
        evaluation_func = functools.partial(evaluation, validation_dataloader, validation_dataloader2)
        steps_per_epoch = len(train_dataloader)
        training_epochs = 3

        finetuned_model_state_path = Path(model_dir) / 'finetuned_model_state.pth'

        if finetuned_model_state_path.exists():
            pretrained_model.load_state_dict(torch.load(finetuned_model_state_path))
        elif dev_mode:
            pass
        else:
            optimizer = Adam(pretrained_model.parameters(), lr=3e-5, eps=1e-8)

            def lr_lambda(current_step: int):
                return max(0.0, float(training_epochs * steps_per_epoch - current_step) / float(training_epochs * steps_per_epoch))

            lr_scheduler = LambdaLR(optimizer, lr_lambda)
            training(train_dataloader, pretrained_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler, max_epochs=training_epochs,
                        save_best_model=True, save_path=finetuned_model_state_path, evaluation_func=evaluation_func)
        return pretrained_model

    finetuned_model = create_finetuned_model()





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.weight']
    - This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
    - This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
    Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']
    You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    Reusing dataset glue (./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)

      0%|          | 0/5 [00:00<?, ?it/s]
    100%|##########| 5/5 [00:00<00:00, 1213.84it/s]
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-9c32a3d5eca55607.arrow
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-6f0849c5f6325016.arrow

      0%|          | 0/10 [00:00<?, ?ba/s]
     40%|####      | 4/10 [00:00<00:00, 34.52ba/s]
     90%|######### | 9/10 [00:00<00:00, 38.77ba/s]
    100%|##########| 10/10 [00:00<00:00, 38.78ba/s]




.. GENERATED FROM PYTHON SOURCE LINES 300-302

Using finetuned model as teacher model to create dataloader.
Add 'teacher_logits' to dataset, it is used to do the distillation, it can be seen as a kind of data label.

.. GENERATED FROM PYTHON SOURCE LINES 302-310

.. code-block:: default


    if not dev_mode:
        train_dataloader, validation_dataloader, validation_dataloader2 = prepare_data(teacher_model=finetuned_model)
    else:
        train_dataloader, validation_dataloader, validation_dataloader2 = prepare_data()

    evaluation_func = functools.partial(evaluation, validation_dataloader, validation_dataloader2)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Reusing dataset glue (./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)

      0%|          | 0/5 [00:00<?, ?it/s]
    100%|##########| 5/5 [00:00<00:00, 1249.79it/s]
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-9c32a3d5eca55607.arrow
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-6f0849c5f6325016.arrow
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-5db72911f5dfb448.arrow




.. GENERATED FROM PYTHON SOURCE LINES 311-314

Pruning
^^^^^^^
First, using MovementPruner to prune attention head.

.. GENERATED FROM PYTHON SOURCE LINES 314-367

.. code-block:: default


    steps_per_epoch = len(train_dataloader)

    # Set training steps/epochs for pruning.

    if not dev_mode:
        total_epochs = 4
        total_steps = total_epochs * steps_per_epoch
        warmup_steps = 1 * steps_per_epoch
        cooldown_steps = 1 * steps_per_epoch
    else:
        total_epochs = 1
        total_steps = 3
        warmup_steps = 1
        cooldown_steps = 1

    # Initialize evaluator used by MovementPruner.

    import nni
    from nni.algorithms.compression.v2.pytorch import TorchEvaluator

    movement_training = functools.partial(training, train_dataloader, log_path=log_dir / 'movement_pruning.log',
                                        evaluation_func=evaluation_func)
    traced_optimizer = nni.trace(Adam)(finetuned_model.parameters(), lr=3e-5, eps=1e-8)

    def lr_lambda(current_step: int):
        if current_step < warmup_steps:
            return float(current_step) / warmup_steps
        return max(0.0, float(total_steps - current_step) / float(total_steps - warmup_steps))

    traced_scheduler = nni.trace(LambdaLR)(traced_optimizer, lr_lambda)
    evaluator = TorchEvaluator(movement_training, traced_optimizer, fake_criterion, traced_scheduler)

    # Apply block-soft-movement pruning on attention layers.

    from nni.compression.pytorch.pruning import MovementPruner

    config_list = [{'op_types': ['Linear'], 'op_partial_names': ['bert.encoder.layer.{}.'.format(i) for i in range(layers_num)], 'sparsity': 0.1}]
    pruner = MovementPruner(model=finetuned_model,
                            config_list=config_list,
                            evaluator=evaluator,
                            training_epochs=total_epochs,
                            training_steps=total_steps,
                            warm_up_step=warmup_steps,
                            cool_down_beginning_step=total_steps - cooldown_steps,
                            regular_scale=10,
                            movement_mode='soft',
                            sparse_granularity='auto')
    _, attention_masks = pruner.compress()
    pruner.show_pruned_weights()

    torch.save(attention_masks, Path(log_dir) / 'attention_masks.pth')





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Did not bind any model, no need to unbind model.
    Did not bind any model, no need to unbind model.




.. GENERATED FROM PYTHON SOURCE LINES 368-372

Load a new finetuned model to do the speedup.
Note that nni speedup don't support replace attention module, so here we manully replace the attention module.

If the head is entire masked, physically prune it and create config_list for FFN pruning.

.. GENERATED FROM PYTHON SOURCE LINES 372-398

.. code-block:: default


    attention_pruned_model = create_finetuned_model().to(device)
    attention_masks = torch.load(Path(log_dir) / 'attention_masks.pth')

    ffn_config_list = []
    layer_count = 0
    module_list = []
    for i in range(0, layers_num):
        prefix = f'bert.encoder.layer.{i}.'
        value_mask: torch.Tensor = attention_masks[prefix + 'attention.self.value']['weight']
        head_mask = (value_mask.reshape(heads_num, -1).sum(-1) == 0.)
        head_idx = torch.arange(len(head_mask))[head_mask].long().tolist()
        print(f'layer {i} pruner {len(head_idx)} head: {head_idx}')
        if len(head_idx) != heads_num:
            attention_pruned_model.bert.encoder.layer[i].attention.prune_heads(head_idx)
            module_list.append(attention_pruned_model.bert.encoder.layer[i])
            # The final ffn weight remaining ratio is the half of the attention weight remaining ratio.
            # This is just an empirical configuration, you can use any other method to determine this sparsity.
            sparsity = 1 - (1 - len(head_idx) / heads_num) * 0.5
            # here we use a simple sparsity schedule, we will prune ffn in 12 iterations, each iteration prune `sparsity_per_iter`.
            sparsity_per_iter = 1 - (1 - sparsity) ** (1 / heads_num)
            ffn_config_list.append({'op_names': [f'bert.encoder.layer.{layer_count}.intermediate.dense'], 'sparsity': sparsity_per_iter})
            layer_count += 1

    attention_pruned_model.bert.encoder.layer = torch.nn.ModuleList(module_list)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.weight']
    - This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
    - This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
    Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']
    You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    Reusing dataset glue (./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)

      0%|          | 0/5 [00:00<?, ?it/s]
    100%|##########| 5/5 [00:00<00:00, 1141.12it/s]
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-9c32a3d5eca55607.arrow
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-6f0849c5f6325016.arrow
    Loading cached processed dataset at ./data/glue/mnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-5db72911f5dfb448.arrow
    layer 0 pruner 0 head: []
    layer 1 pruner 0 head: []
    layer 2 pruner 0 head: []
    layer 3 pruner 0 head: []
    layer 4 pruner 0 head: []
    layer 5 pruner 0 head: []
    layer 6 pruner 0 head: []
    layer 7 pruner 0 head: []
    layer 8 pruner 0 head: []
    layer 9 pruner 0 head: []
    layer 10 pruner 0 head: []
    layer 11 pruner 0 head: []




.. GENERATED FROM PYTHON SOURCE LINES 399-400

Retrain the attention pruned model with distillation.

.. GENERATED FROM PYTHON SOURCE LINES 400-424

.. code-block:: default


    if not dev_mode:
        total_epochs = 5
        total_steps = None
        distillation = True
    else:
        total_epochs = 1
        total_steps = 1
        distillation = False

    optimizer = Adam(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)

    def lr_lambda(current_step: int):
        return max(0.0, float(total_epochs * steps_per_epoch - current_step) / float(total_epochs * steps_per_epoch))

    lr_scheduler = LambdaLR(optimizer, lr_lambda)
    at_model_save_path = log_dir / 'attention_pruned_model_state.pth'
    training(train_dataloader, attention_pruned_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler,
             max_epochs=total_epochs, max_steps=total_steps, save_best_model=True, save_path=at_model_save_path,
             distillation=distillation, evaluation_func=evaluation_func)

    if not dev_mode:
        attention_pruned_model.load_state_dict(torch.load(at_model_save_path))








.. GENERATED FROM PYTHON SOURCE LINES 425-429

Iterative pruning FFN with TaylorFOWeightPruner in 12 iterations.
Finetuning 2000 steps after each iteration, then finetuning 2 epochs after pruning finished.

NNI will support per-step-pruning-schedule in the future, then can use an pruner to replace the following code.

.. GENERATED FROM PYTHON SOURCE LINES 429-508

.. code-block:: default


    if not dev_mode:
        total_epochs = 4
        total_steps = None
        taylor_pruner_steps = 1000
        steps_per_iteration = 2000
        total_pruning_steps = 24000
        distillation = True
    else:
        total_epochs = 1
        total_steps = 6
        taylor_pruner_steps = 2
        steps_per_iteration = 2
        total_pruning_steps = 4
        distillation = False

    from nni.compression.pytorch.pruning import TaylorFOWeightPruner
    from nni.compression.pytorch.speedup import ModelSpeedup

    distil_training = functools.partial(training, train_dataloader, log_path=log_dir / 'taylor_pruning.log',
                                        distillation=distillation, evaluation_func=evaluation_func)
    traced_optimizer = nni.trace(Adam)(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)
    evaluator = TorchEvaluator(distil_training, traced_optimizer, fake_criterion)

    current_step = 0
    best_result = 0
    init_lr = 3e-5

    dummy_input = torch.rand(8, 128, 768).to(device)

    attention_pruned_model.train()
    for current_epoch in range(total_epochs):
        for batch in train_dataloader:
            if total_steps and current_step >= total_steps:
                break
            # pruning 12 times
            if current_step % steps_per_iteration == 0 and current_step < total_pruning_steps:
                check_point = attention_pruned_model.state_dict()
                pruner = TaylorFOWeightPruner(attention_pruned_model, ffn_config_list, evaluator, taylor_pruner_steps)
                _, ffn_masks = pruner.compress()
                renamed_ffn_masks = {}
                # rename the masks keys, because we only speedup the bert.encoder
                for model_name, targets_mask in ffn_masks.items():
                    renamed_ffn_masks[model_name.split('bert.encoder.')[1]] = targets_mask
                pruner._unwrap_model()
                attention_pruned_model.load_state_dict(check_point)
                ModelSpeedup(attention_pruned_model.bert.encoder, dummy_input, renamed_ffn_masks).speedup_model()
                optimizer = Adam(attention_pruned_model.parameters(), lr=init_lr)

            batch.to(device)
            teacher_logits = batch.pop('teacher_logits', None)
            optimizer.zero_grad()

            # manually schedule lr
            for params_group in optimizer.param_groups:
                params_group['lr'] = (1 - current_step / (total_epochs * steps_per_epoch)) * init_lr

            outputs = attention_pruned_model(**batch)
            loss = outputs.loss

            # distillation
            if teacher_logits is not None:
                distil_loss = F.kl_div(F.log_softmax(outputs.logits / 2, dim=-1),
                                        F.softmax(teacher_logits / 2, dim=-1), reduction='batchmean') * (2 ** 2)
                loss = 0.1 * loss + 0.9 * distil_loss
            loss.backward()
            optimizer.step()

            current_step += 1
            if current_step % 1000 == 0 or current_step % len(train_dataloader) == 0:
                result = evaluation_func(attention_pruned_model)
                with (log_dir / 'ffn_pruning.log').open('a+') as f:
                    msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())),
                                                                current_epoch, current_step, result)
                    f.write(msg)
                if current_step >= total_pruning_steps and best_result < result['default']:
                    torch.save(attention_pruned_model, log_dir / 'best_model.pth')
                    best_result = result['default']





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Did not bind any model, no need to unbind model.
    no multi-dimension masks found.
    /home/nishang/anaconda3/envs/nni-dev/lib/python3.7/site-packages/torch/_tensor.py:1083: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the .grad field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations. (Triggered internally at  aten/src/ATen/core/TensorBody.h:477.)
      return self._grad
    Did not bind any model, no need to unbind model.
    no multi-dimension masks found.




.. GENERATED FROM PYTHON SOURCE LINES 509-564

Result
------
The speedup is test on the entire validation dataset with batch size 32 on A100.
We test under two pytorch version and found the latency varying widely.

Setting 1: pytorch 1.12.1

Setting 2: pytorch 1.10.0

.. list-table:: Prune Bert-base-uncased on MNLI
    :header-rows: 1
    :widths: auto

    * - Attention Pruning Method
      - FFN Pruning Method
      - Total Sparsity
      - Accuracy
      - Acc. Drop
      - Speedup (S1)
      - Speedup (S2)
    * -
      -
      - 0%
      - 84.73 / 84.63
      - +0.0 / +0.0
      - 12.56s (x1.00)
      - 4.05s (x1.00)
    * - :ref:`movement-pruner` (soft, th=0.1, lambda=5)
      - :ref:`taylor-fo-weight-pruner`
      - 51.39%
      - 84.25 / 84.96
      - -0.48 / +0.33
      - 6.85s (x1.83)
      - 2.7s (x1.50)
    * - :ref:`movement-pruner` (soft, th=0.1, lambda=10)
      - :ref:`taylor-fo-weight-pruner`
      - 66.67%
      - 83.98 / 83.75
      - -0.75 / -0.88
      - 4.73s (x2.66)
      - 2.16s (x1.86)
    * - :ref:`movement-pruner` (soft, th=0.1, lambda=20)
      - :ref:`taylor-fo-weight-pruner`
      - 77.78%
      - 83.02 / 83.06
      - -1.71 / -1.57
      - 3.35s (x3.75)
      - 1.72s (x2.35)
    * - :ref:`movement-pruner` (soft, th=0.1, lambda=30)
      - :ref:`taylor-fo-weight-pruner`
      - 87.04%
      - 81.24 / 80.99
      - -3.49 / -3.64
      - 2.19s (x5.74)
      - 1.31s (x3.09)


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  27.206 seconds)


.. _sphx_glr_download_tutorials_pruning_bert_glue.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: pruning_bert_glue.py <pruning_bert_glue.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: pruning_bert_glue.ipynb <pruning_bert_glue.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_