test_hpo_formatting.py 6.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from math import exp, log
from nni.common.hpo_utils import deformat_parameters, format_search_space

user_space = {
    'pool': { '_type': 'choice', '_value': ['max', 'min', 'avg'] },
    'kernel': { '_type': 'randint', '_value': [2, 8] },
    'D': {  # distribution
        '_type': 'choice',
        '_value': [
            {
                '_name': 'UNIFORM',
                'dropout': { '_type': 'uniform', '_value': [0.5, 0.9] },
                'hidden': { '_type': 'quniform', '_value': [100, 1000, 3] },
                'U_lr': { '_type': 'loguniform', '_value': [0.0001, 0.1] },
                'U_batch': { '_type': 'qloguniform', '_value': [16.0, 128.0, 0.725] },
            },
            {
                '_name': 'NORMAL',
                'dropout': { '_type': 'normal', '_value': [0.7, 0.2] },
                'hidden': { '_type': 'qnormal', '_value': [500, 200, 3] },
                'N_lr': { '_type': 'lognormal', '_value': [-6, 3] },
                'N_batch': { '_type': 'qlognormal', '_value': [3.5, 1.2, 0.725] },
            },
            {
                '_name': 'EMPTY',
            },
        ]
    },
    'not_nested': {
        '_type': 'choice',
        '_value': [
            {'x': 0, 'y': 0},
            {'x': 1, 'y': 2},
        ],
    },
}


spec_names = ['pool', 'kernel', 'D', 'dropout', 'hidden', 'U_lr', 'U_batch', 'dropout', 'hidden', 'N_lr', 'N_batch', 'not_nested']
spec_types = ['choice', 'randint', 'choice', 'uniform', 'quniform', 'loguniform', 'qloguniform', 'normal', 'qnormal', 'lognormal', 'qlognormal', 'choice']
spec_values = [['max','min','avg'], [2,8], user_space['D']['_value'], [0.5,0.9], [100.0,1000.0,3.0], [0.0001,0.1], [16.0,128.0,0.725], [0.7,0.2], [500.0,200.0,3.0], [-6.0,3.0], [3.5,1.2,0.725], [{'x':0,'y':0},{'x':1,'y':2}]]
spec_keys = [('pool',), ('kernel',), ('D',), ('D',0,'dropout'), ('D',0,'hidden'), ('D',0,'U_lr'), ('D',0,'U_batch'), ('D',1,'dropout'), ('D',1,'hidden'), ('D',1,'N_lr'), ('D',1,'N_batch'), ('not_nested',)]
spec_categoricals = [True, True, True, False, False, False, False, False, False, False, False, True]
spec_sizes = [3, 6, 3, None, None, None, None, None, None, None, None, 2]
spec_lows = [None, None, None, 0.5, 100.0, log(0.0001), log(16.0), None, None, None, None, None]
spec_highs = [None, None, None, 0.9, 1000.0, log(0.1), log(128.0), None, None, None, None, None]
spec_normals = [None, None, None, False, False, False, False, True, True, True, True, None]
spec_mus = [None, None, None, None, None, None, None, 0.7, 500.0, -6.0, 3.5, None]
spec_sigmas = [None, None, None, None, None, None, None, 0.2, 200.0, 3.0, 1.2, None]
spec_qs = [None, None, None, None, 3.0, None, 0.725, None, 3.0, None, 0.725, None]
spec_clips = [None, None, None, None, (100.0,1000.0), None, (16.0,128.0), None, None, None, None, None]
spec_logs = [None, None, None, False, False, True, True, False, False, True, True, None]

def test_formatting():
    internal_space = format_search_space(user_space)
    assert all(key == value.key for key, value in internal_space.items())
    specs = list(internal_space.values())
    assert spec_names == [spec.name for spec in specs]
    assert spec_types == [spec.type for spec in specs]
    assert spec_values == [spec.values for spec in specs]
    assert spec_keys == [spec.key for spec in specs]
    assert spec_categoricals == [spec.categorical for spec in specs]
    assert spec_sizes == [spec.size for spec in specs]
    assert spec_lows == [spec.low for spec in specs]
    assert spec_highs == [spec.high for spec in specs]
    assert spec_normals == [spec.normal_distributed for spec in specs]
    assert spec_mus == [spec.mu for spec in specs]
    assert spec_sigmas == [spec.sigma for spec in specs]
    assert spec_qs == [spec.q for spec in specs]
    assert spec_clips == [spec.clip for spec in specs]
    assert spec_logs == [spec.log_distributed for spec in specs]


internal_params_1 = {
    ('pool',): 0,
    ('kernel',): 5,
    ('D',): 0,
    ('D',0,'dropout'): 0.7,
    ('D',0,'hidden'): 100.1,  # round to 99.0, then clip to 100.0
    ('D',0,'U_lr'): -4.6,
    ('D',0,'U_batch'): 4.0,
    ('not_nested',): 0,
}

user_params_1 = {
    'pool': 'max',
    'kernel': 7,
    'D': {
        '_name': 'UNIFORM',
        'dropout': 0.7,
        'hidden': 100.0,
        'U_lr': exp(-4.6),
        'U_batch': 54.375,
    },
    'not_nested': {'x': 0, 'y': 0},
}

internal_params_2 = {
    ('pool',): 2,
    ('kernel',): 0,
    ('D',): 1,
    ('D',1,'dropout'): 0.7,
    ('D',1,'hidden'): 100.1,
    ('D',1,'N_lr'): -4.6,
    ('D',1,'N_batch'): 4.0,
    ('not_nested',): 1,
}

user_params_2 = {
    'pool': 'avg',
    'kernel': 2,
    'D': {
        '_name': 'NORMAL',
        'dropout': 0.7,
        'hidden': 99.0,
        'N_lr': exp(-4.6),
        'N_batch': 54.375,
    },
    'not_nested': {'x': 1, 'y': 2},
}

internal_params_3 = {
    ('pool',): 1,
    ('kernel',): 1,
    ('D',): 2,
    ('not_nested',): 1,
}

user_params_3 = {
    'pool': 'min',
    'kernel': 3,
    'D': {
        '_name': 'EMPTY',
    },
    'not_nested': {'x': 1, 'y': 2},
}

def test_deformatting():
    internal_space = format_search_space(user_space)
    assert deformat_parameters(internal_params_1, internal_space) == user_params_1
    assert deformat_parameters(internal_params_2, internal_space) == user_params_2
    assert deformat_parameters(internal_params_3, internal_space) == user_params_3


def test_activate():
    internal_space = format_search_space(user_space)

    assert internal_space[('pool',)].is_activated_in({})

    partial = { ('pool',): 1, ('kernel',): 1, ('D',): 0 }
    assert internal_space[('D', 0, 'dropout')].is_activated_in(partial)
    assert internal_space[('D', 0, 'U_lr')].is_activated_in(partial)
    assert not internal_space[('D', 1, 'dropout')].is_activated_in(partial)
    assert not internal_space[('D', 1, 'N_lr')].is_activated_in(partial)

    partial = { ('pool',): 1, ('kernel',): 1, ('D',): 2 }
    assert not internal_space[('D', 0, 'dropout')].is_activated_in(partial)
    assert not internal_space[('D', 0, 'U_lr')].is_activated_in(partial)
    assert not internal_space[('D', 1, 'dropout')].is_activated_in(partial)
    assert not internal_space[('D', 1, 'N_lr')].is_activated_in(partial)

    assert internal_space[('not_nested',)].is_activated_in(partial)


if __name__ == '__main__':
    test_formatting()
    test_deformatting()
    test_activate()