search.py 3.93 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse

import nni.retiarii.nn.pytorch as nn
import nni.retiarii.strategy as strategy
import nni.retiarii.evaluator.pytorch.lightning as pl
import torch
import torch.nn.functional as F
from nni.retiarii import serialize, model_wrapper
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
from torchvision import transforms
from torchvision.datasets import MNIST


class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.depthwise = nn.Conv2d(in_ch, in_ch, kernel_size=3, groups=in_ch)
        self.pointwise = nn.Conv2d(in_ch, out_ch, kernel_size=1)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))


@model_wrapper
class ComplexNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.LayerChoice([
            nn.Conv2d(32, 64, 3, 1),
            DepthwiseSeparableConv(32, 64)
        ])
        self.dropout1 = nn.Dropout(nn.ValueChoice([0.25, 0.5, 0.75]))
        self.dropout2 = nn.Dropout(0.5)
        feature = nn.ValueChoice([64, 128, 256])
        self.fc1 = nn.Linear(9216, feature)
        self.fc2 = nn.Linear(feature, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.flatten(self.dropout1(x), 1)
        x = self.fc2(self.dropout2(F.relu(self.fc1(x))))
        output = F.log_softmax(x, dim=1)
        return output


@model_wrapper
class SimpleNet(nn.Module):
    def __init__(self, hidden_size):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.LayerChoice([
            nn.Linear(4*4*50, hidden_size),
            nn.Linear(4*4*50, hidden_size, bias=False)
        ], label='fc1_choice')
        self.fc2 = nn.Linear(hidden_size, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--net', choices=['simple', 'complex'], default='simple')
    parser.add_argument('--exec', choices=['python', 'graph'], default='python')
    parser.add_argument('--budget', default=2, type=int)
    parser.add_argument('--port', default=8899, type=int)

    args = parser.parse_args()

    if args.net == 'simple':
        base_model = SimpleNet(32)
    else:
        base_model = ComplexNet()
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = serialize(MNIST, root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = serialize(MNIST, root='data/mnist', train=False, download=True, transform=transform)
    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=2, gpus=1, limit_train_batches=0.1, limit_val_batches=0.1)

    simple_strategy = strategy.Random()

    exp = RetiariiExperiment(base_model, trainer, [], simple_strategy)

    exp_config = RetiariiExeConfig('local')
    exp_config.experiment_name = 'mnist_search'
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = args.budget
    exp_config.trial_gpu_number = 1
    exp_config.training_service.use_active_gpu = True  # Integration test GPU has a Xorg running
    export_formatter = 'dict'

    if args.exec == 'graph':
        exp_config.execution_engine = 'base'
        export_formatter = 'code'

    exp.run(exp_config, args.port)
    print('Final model:')
    for model_code in exp.export_top_models(formatter=export_formatter):
        print(model_code)