putils.py 2.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch.nn as nn

def get_parameters(model, keys=None, mode='include'):
    if keys is None:
        for name, param in model.named_parameters():
            yield param
    elif mode == 'include':
        for name, param in model.named_parameters():
            flag = False
            for key in keys:
                if key in name:
                    flag = True
                    break
            if flag:
                yield param
    elif mode == 'exclude':
        for name, param in model.named_parameters():
            flag = True
            for key in keys:
                if key in name:
                    flag = False
                    break
            if flag:
                yield param
    else:
        raise ValueError('do not support: %s' % mode)


def get_same_padding(kernel_size):
    if isinstance(kernel_size, tuple):
        assert len(kernel_size) == 2, 'invalid kernel size: %s' % kernel_size
        p1 = get_same_padding(kernel_size[0])
        p2 = get_same_padding(kernel_size[1])
        return p1, p2
    assert isinstance(kernel_size, int), 'kernel size should be either `int` or `tuple`'
    assert kernel_size % 2 > 0, 'kernel size should be odd number'
    return kernel_size // 2

def build_activation(act_func, inplace=True):
    if act_func == 'relu':
        return nn.ReLU(inplace=inplace)
    elif act_func == 'relu6':
        return nn.ReLU6(inplace=inplace)
    elif act_func == 'tanh':
        return nn.Tanh()
    elif act_func == 'sigmoid':
        return nn.Sigmoid()
    elif act_func is None:
        return None
    else:
        raise ValueError('do not support: %s' % act_func)


def make_divisible(v, divisor, min_val=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_val is None:
        min_val = divisor
    new_v = max(min_val, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v