"vscode:/vscode.git/clone" did not exist on "51078b5d07a567b7256311ff960d6eb8db1adc3c"
datasets.py 6.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets

def get_split_list(in_dim, child_num):
    in_dim_list = [in_dim // child_num] * child_num
    for _i in range(in_dim % child_num):
        in_dim_list[_i] += 1
    return in_dim_list

class DataProvider:
    VALID_SEED = 0  # random seed for the validation set

    @staticmethod
    def name():
        """ Return name of the dataset """
        raise NotImplementedError

    @property
    def data_shape(self):
        """ Return shape as python list of one data entry """
        raise NotImplementedError

    @property
    def n_classes(self):
        """ Return `int` of num classes """
        raise NotImplementedError

    @property
    def save_path(self):
        """ local path to save the data """
        raise NotImplementedError

    @property
    def data_url(self):
        """ link to download the data """
        raise NotImplementedError

    @staticmethod
    def random_sample_valid_set(train_labels, valid_size, n_classes):
        train_size = len(train_labels)
        assert train_size > valid_size

        g = torch.Generator()
        g.manual_seed(DataProvider.VALID_SEED)  # set random seed before sampling validation set
        rand_indexes = torch.randperm(train_size, generator=g).tolist()

        train_indexes, valid_indexes = [], []
        per_class_remain = get_split_list(valid_size, n_classes)

        for idx in rand_indexes:
            label = train_labels[idx]
            if isinstance(label, float):
                label = int(label)
            elif isinstance(label, np.ndarray):
                label = np.argmax(label)
            else:
                assert isinstance(label, int)
            if per_class_remain[label] > 0:
                valid_indexes.append(idx)
                per_class_remain[label] -= 1
            else:
                train_indexes.append(idx)
        return train_indexes, valid_indexes


class ImagenetDataProvider(DataProvider):

    def __init__(self, save_path=None, train_batch_size=256, test_batch_size=512, valid_size=None,
                 n_worker=32, resize_scale=0.08, distort_color=None):

        self._save_path = save_path
        train_transforms = self.build_train_transform(distort_color, resize_scale)
        train_dataset = datasets.ImageFolder(self.train_path, train_transforms)

        if valid_size is not None:
            if isinstance(valid_size, float):
                valid_size = int(valid_size * len(train_dataset))
            else:
                assert isinstance(valid_size, int), 'invalid valid_size: %s' % valid_size
            train_indexes, valid_indexes = self.random_sample_valid_set(
                [cls for _, cls in train_dataset.samples], valid_size, self.n_classes,
            )
            train_sampler = torch.utils.data.sampler.SubsetRandomSampler(train_indexes)
            valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(valid_indexes)

            valid_dataset = datasets.ImageFolder(self.train_path, transforms.Compose([
                transforms.Resize(self.resize_value),
                transforms.CenterCrop(self.image_size),
                transforms.ToTensor(),
                self.normalize,
            ]))

            self.train = torch.utils.data.DataLoader(
                train_dataset, batch_size=train_batch_size, sampler=train_sampler,
                num_workers=n_worker, pin_memory=True,
            )
            self.valid = torch.utils.data.DataLoader(
                valid_dataset, batch_size=test_batch_size, sampler=valid_sampler,
                num_workers=n_worker, pin_memory=True,
            )
        else:
            self.train = torch.utils.data.DataLoader(
                train_dataset, batch_size=train_batch_size, shuffle=True,
                num_workers=n_worker, pin_memory=True,
            )
            self.valid = None

        self.test = torch.utils.data.DataLoader(
            datasets.ImageFolder(self.valid_path, transforms.Compose([
                transforms.Resize(self.resize_value),
                transforms.CenterCrop(self.image_size),
                transforms.ToTensor(),
                self.normalize,
            ])), batch_size=test_batch_size, shuffle=False, num_workers=n_worker, pin_memory=True,
        )

        if self.valid is None:
            self.valid = self.test

    @staticmethod
    def name():
        return 'imagenet'

    @property
    def data_shape(self):
        return 3, self.image_size, self.image_size  # C, H, W

    @property
    def n_classes(self):
        return 1000

    @property
    def save_path(self):
        if self._save_path is None:
            self._save_path = '/dataset/imagenet'
        return self._save_path

    @property
    def data_url(self):
        raise ValueError('unable to download ImageNet')

    @property
    def train_path(self):
        return os.path.join(self.save_path, 'train')

    @property
    def valid_path(self):
        return os.path.join(self._save_path, 'val')

    @property
    def normalize(self):
        return transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

    def build_train_transform(self, distort_color, resize_scale):
        print('Color jitter: %s' % distort_color)
        if distort_color == 'strong':
            color_transform = transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1)
        elif distort_color == 'normal':
            color_transform = transforms.ColorJitter(brightness=32. / 255., saturation=0.5)
        else:
            color_transform = None
        if color_transform is None:
            train_transforms = transforms.Compose([
                transforms.RandomResizedCrop(self.image_size, scale=(resize_scale, 1.0)),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                self.normalize,
            ])
        else:
            train_transforms = transforms.Compose([
                transforms.RandomResizedCrop(self.image_size, scale=(resize_scale, 1.0)),
                transforms.RandomHorizontalFlip(),
                color_transform,
                transforms.ToTensor(),
                self.normalize,
            ])
        return train_transforms

    @property
    def resize_value(self):
        return 256

    @property
    def image_size(self):
        return 224