test_strategy.py 4.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
import random
import time
import threading
from typing import *

import nni.retiarii.execution.api
import nni.retiarii.nn.pytorch as nn
import nni.retiarii.strategy as strategy
import torch
import torch.nn.functional as F
from nni.retiarii import Model
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.execution import wait_models
from nni.retiarii.execution.interface import AbstractExecutionEngine, WorkerInfo, MetricData, AbstractGraphListener
15
from nni.retiarii.graph import DebugEvaluator, ModelStatus
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from nni.retiarii.nn.pytorch.mutator import process_inline_mutation


class MockExecutionEngine(AbstractExecutionEngine):
    def __init__(self, failure_prob=0.):
        self.models = []
        self.failure_prob = failure_prob
        self._resource_left = 4

    def _model_complete(self, model: Model):
        time.sleep(random.uniform(0, 1))
        if random.uniform(0, 1) < self.failure_prob:
            model.status = ModelStatus.Failed
        else:
            model.metric = random.uniform(0, 1)
            model.status = ModelStatus.Trained
        self._resource_left += 1

    def submit_models(self, *models: Model) -> None:
        for model in models:
            self.models.append(model)
            self._resource_left -= 1
            threading.Thread(target=self._model_complete, args=(model, )).start()

40
41
42
    def list_models(self) -> List[Model]:
        return self.models

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def query_available_resource(self) -> Union[List[WorkerInfo], int]:
        return self._resource_left

    def register_graph_listener(self, listener: AbstractGraphListener) -> None:
        pass

    def trial_execute_graph(cls) -> MetricData:
        pass


def _reset_execution_engine(engine=None):
    nni.retiarii.execution.api._execution_engine = engine


class Net(nn.Module):
    def __init__(self, hidden_size=32):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.LayerChoice([
            nn.Linear(4*4*50, hidden_size, bias=True),
            nn.Linear(4*4*50, hidden_size, bias=False)
        ])
        self.fc2 = nn.LayerChoice([
            nn.Linear(hidden_size, 10, bias=False),
            nn.Linear(hidden_size, 10, bias=True)
        ])

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def _get_model_and_mutators():
    base_model = Net()
    script_module = torch.jit.script(base_model)
    base_model_ir = convert_to_graph(script_module, base_model)
86
    base_model_ir.evaluator = DebugEvaluator()
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    mutators = process_inline_mutation(base_model_ir)
    return base_model_ir, mutators


def test_grid_search():
    gridsearch = strategy.GridSearch()
    engine = MockExecutionEngine()
    _reset_execution_engine(engine)
    gridsearch.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    selection = set()
    for model in engine.models:
        selection.add((
            model.get_node_by_name('_model__fc1').operation.parameters['bias'],
            model.get_node_by_name('_model__fc2').operation.parameters['bias']
        ))
    assert len(selection) == 4
    _reset_execution_engine()


def test_random_search():
    random = strategy.Random()
    engine = MockExecutionEngine()
    _reset_execution_engine(engine)
    random.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    selection = set()
    for model in engine.models:
        selection.add((
            model.get_node_by_name('_model__fc1').operation.parameters['bias'],
            model.get_node_by_name('_model__fc2').operation.parameters['bias']
        ))
    assert len(selection) == 4
    _reset_execution_engine()


def test_evolution():
    evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, on_failure='ignore')
    engine = MockExecutionEngine(failure_prob=0.2)
    _reset_execution_engine(engine)
    evolution.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    _reset_execution_engine()

    evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, on_failure='worst')
    engine = MockExecutionEngine(failure_prob=0.4)
    _reset_execution_engine(engine)
    evolution.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    _reset_execution_engine()


if __name__ == '__main__':
    test_grid_search()
    test_random_search()
    test_evolution()