README_zh_CN.md 18.7 KB
Newer Older
Chi Song's avatar
Chi Song committed
1
<p align="center">
2
<img src="docs/img/nni_logo.png" width="300"/>
Chi Song's avatar
Chi Song committed
3
4
5
6
</p>

* * *

7
[![MIT 许可证](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE) [![生成状态](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/Microsoft.nni)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=6) [![问题](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen) [![Bug](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug) [![拉取请求](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen) [![版本](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases) [![进入 https://gitter.im/Microsoft/nni 聊天室提问](https://badges.gitter.im/Microsoft/nni.svg)](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![文档状态](https://readthedocs.org/projects/nni/badge/?version=latest)](https://nni.readthedocs.io/zh/latest/?badge=latest)
Chi Song's avatar
Chi Song committed
8

9
[English](README.md)
Chi Song's avatar
Chi Song committed
10

Chi Song's avatar
Chi Song committed
11
**NNI (Neural Network Intelligence)** 是一个轻量但强大的工具包,帮助用户**自动**的进行[特征工程](docs/zh_CN/FeatureEngineering/Overview.md)[神经网络架构搜索](docs/zh_CN/NAS/Overview.md)[超参调优](docs/zh_CN/Tuner/BuiltinTuner.md)以及[模型压缩](docs/zh_CN/Compressor/Overview.md)
Chi Song's avatar
Chi Song committed
12

Chi Song's avatar
Chi Song committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
NNI 管理自动机器学习 (AutoML) 的 Experiment,**调度运行**由调优算法生成的 Trial 任务来找到最好的神经网络架构和/或超参,支持**各种训练环境**,如[本机](docs/zh_CN/TrainingService/LocalMode.md)[远程服务器](docs/zh_CN/TrainingService/RemoteMachineMode.md)[OpenPAI](docs/zh_CN/TrainingService/PaiMode.md)[Kubeflow](docs/zh_CN/TrainingService/KubeflowMode.md)[基于 K8S 的 FrameworkController(如,AKS 等)](docs/zh_CN/TrainingService/FrameworkControllerMode.md),以及其它云服务。

## **使用场景**

* 想要在自己的代码、模型中试验**不同的自动机器学习算法**
* 想要在**不同的环境中**加速运行自动机器学习。
* 想要更容易**实现或试验新的自动机器学习算法**的研究员或数据科学家,包括:超参调优算法,神经网络搜索算法以及模型压缩算法。
* 在机器学习平台中**支持自动机器学习**

### **NNI v1.2 已发布! &nbsp;[<img width="48" src="docs/img/release_icon.png" />](#nni-released-reminder)**

## **NNI 功能一览**

NNI 提供命令行工具以及友好的 WebUI 来管理训练的 Experiment。 通过可扩展的 API,可定制自动机器学习算法和训练平台。 为了方便新用户,NNI 内置了最新的自动机器学习算法,并为流行的训练平台提供了开箱即用的支持。

下表中,包含了 NNI 的功能,同时在不断地增添新功能,也非常希望您能贡献其中。
Chi Song's avatar
Chi Song committed
29
30

<p align="center">
Chi Song's avatar
Chi Song committed
31
  <a href="#nni-has-been-released"><img src="docs/img/overview.svg" /></a>
Chi Song's avatar
Chi Song committed
32
33
34
35
36
</p>

<table>
  <tbody>
    <tr align="center" valign="bottom">
Chi Song's avatar
Chi Song committed
37
38
    <td>
      </td>
Chi Song's avatar
Chi Song committed
39
      <td>
Chi Song's avatar
Chi Song committed
40
        <b>支持的框架和库</b>
41
        <img src="docs/img/bar.png"/>
Chi Song's avatar
Chi Song committed
42
43
      </td>
      <td>
Chi Song's avatar
Chi Song committed
44
        <b>算法</b>
45
        <img src="docs/img/bar.png"/>
Chi Song's avatar
Chi Song committed
46
47
      </td>
      <td>
Chi Song's avatar
Chi Song committed
48
        <b>训练平台</b>
49
        <img src="docs/img/bar.png"/>
Chi Song's avatar
Chi Song committed
50
51
      </td>
    </tr>
Chi Song's avatar
Chi Song committed
52
    </tr>
Chi Song's avatar
Chi Song committed
53
    <tr valign="top">
Chi Song's avatar
Chi Song committed
54
55
56
    <td align="center" valign="middle">
    <b>内置</b>
      </td>
Chi Song's avatar
Chi Song committed
57
      <td>
Chi Song's avatar
Chi Song committed
58
      <ul><li><b>支持的框架</b></li>
Chi Song's avatar
Chi Song committed
59
60
61
        <ul>
          <li>PyTorch</li>
          <li>Keras</li>
Chi Song's avatar
Chi Song committed
62
          <li>TensorFlow</li>
Chi Song's avatar
Chi Song committed
63
64
          <li>MXNet</li>
          <li>Caffe2</li>
Chi Song's avatar
Chi Song committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
          <a href="docs/zh_CN/SupportedFramework_Library.md">更多...</a><br/>
        </ul>
        </ul>
      <ul>
        <li><b>支持的库</b></li>
          <ul>
           <li>Scikit-learn</li>
           <li>XGBoost</li>
           <li>LightGBM</li>
           <a href="docs/zh_CN/SupportedFramework_Library.md">更多...</a><br/>
          </ul>
      </ul>
        <ul>
        <li><b>示例</b></li>
         <ul>
Chi Song's avatar
Chi Song committed
80
           <li><a href="examples/trials/mnist-pytorch">MNIST-pytorch</li></a>
Chi Song's avatar
Chi Song committed
81
           <li><a href="examples/trials/mnist-tfv1">MNIST-tensorflow</li></a>
Chi Song's avatar
Chi Song committed
82
83
84
85
86
87
           <li><a href="examples/trials/mnist-keras">MNIST-keras</li></a>
           <li><a href="docs/zh_CN/TrialExample/GbdtExample.md">Auto-gbdt</a></li>
           <li><a href="docs/zh_CN/TrialExample/Cifar10Examples.md">Cifar10-pytorch</li></a>
           <li><a href="docs/zh_CN/TrialExample/SklearnExamples.md">Scikit-learn</a></li>
              <a href="docs/zh_CN/SupportedFramework_Library.md">更多...</a><br/>
          </ul>
Chi Song's avatar
Chi Song committed
88
89
        </ul>
      </td>
Chi Song's avatar
Chi Song committed
90
      <td align="left" >
Chi Song's avatar
Chi Song committed
91
        <a href="docs/zh_CN/Tuner/BuiltinTuner.md">超参调优</a>
Chi Song's avatar
Chi Song committed
92
        <ul>
Chi Song's avatar
Chi Song committed
93
          <b>穷举搜索</b>
Chi Song's avatar
Chi Song committed
94
          <ul>
Chi Song's avatar
Chi Song committed
95
96
97
98
99
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#Random">Random Search(随机搜索)</a></li>
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#GridSearch">Grid Search(遍历搜索)</a></li>
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#Batch">Batch(批处理)</a></li>
            </ul>
          <b>启发式搜索</b>
Chi Song's avatar
Chi Song committed
100
          <ul>
Chi Song's avatar
Chi Song committed
101
102
103
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#Evolution">Naïve Evolution(朴素进化)</a></li>
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#Anneal">Anneal(退火算法)</a></li>  
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#Hyperband">Hyperband</a></li>
Chi Song's avatar
Chi Song committed
104
          </ul>
Chi Song's avatar
Chi Song committed
105
106
107
108
109
110
111
112
113
          <b>贝叶斯优化</b>
            <ul>
              <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#BOHB">BOHB</a></li>  
              <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#TPE">TPE</a></li>
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#SMAC">SMAC</a></li> 
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#MetisTuner">Metis Tuner</a></li>
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#GPTuner">GP Tuner</a> </li>
            </ul>  
          <b>基于强化学习</b>
Chi Song's avatar
Chi Song committed
114
          <ul>
Chi Song's avatar
Chi Song committed
115
            <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#PPOTuner">PPO Tuner</a> </li>
Chi Song's avatar
Chi Song committed
116
          </ul>
Chi Song's avatar
Chi Song committed
117
        </ul>
Chi Song's avatar
Chi Song committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
          <a href="docs/zh_CN/NAS/Overview.md">神经网络架构搜索</a>
          <ul>                        
            <ul>
              <li><a href="docs/zh_CN/NAS/Overview.md#enas">ENAS</a></li>
              <li><a href="docs/zh_CN/NAS/Overview.md#darts">DARTS</a></li>
              <li><a href="docs/zh_CN/NAS/Overview.md#p-darts">P-DARTS</a></li>
              <li><a href="docs/zh_CN/Tuner/BuiltinTuner.md#NetworkMorphism">Network Morphism</a> </li>
            </ul>    
          </ul>
          <a href="docs/zh_CN/Compressor/Overview.md">模型压缩</a>
          <ul>
            <b>剪枝</b>
            <ul>
              <li><a href="docs/zh_CN/Compressor/Pruner.md#agp-pruner">AGP Pruner</a></li>
              <li><a href="docs/zh_CN/Compressor/Pruner.md#slim-pruner">Slim Pruner</a></li>
              <li><a href="docs/zh_CN/Compressor/Pruner.md#fpgm-pruner">FPGM Pruner</a></li>
            </ul>
            <b>量化</b>
            <ul>
              <li><a href="docs/zh_CN/Compressor/Quantizer.md#qat-quantizer">QAT Quantizer</a></li>
              <li><a href="docs/zh_CN/Compressor/Quantizer.md#dorefa-quantizer">DoReFa Quantizer</a></li>
            </ul>
          </ul>
          <a href="docs/zh_CN/FeatureEngineering/Overview.md">特征工程(测试版)</a>
Chi Song's avatar
Chi Song committed
142
          <ul>
Chi Song's avatar
Chi Song committed
143
144
145
146
          <li><a href="docs/zh_CN/FeatureEngineering/GradientFeatureSelector.md">GradientFeatureSelector</a></li>
          <li><a href="docs/zh_CN/FeatureEngineering/GBDTSelector.md">GBDTSelector</a></li>
          </ul>
          <a href="docs/zh_CN/Assessor/BuiltinAssessor.md">提前终止算法</a>
Chi Song's avatar
Chi Song committed
147
          <ul>
148
149
          <li><a href="docs/zh_CN/Assessor/BuiltinAssessor.md#Medianstop">Median Stop(中位数终止)</a></li>
          <li><a href="docs/zh_CN/Assessor/BuiltinAssessor.md#Curvefitting">Curve Fitting(曲线拟合)</a></li>   
Chi Song's avatar
Chi Song committed
150
          </ul>
Chi Song's avatar
Chi Song committed
151
152
153
      </td>
      <td>
      <ul>
154
155
        <li><a href="docs/zh_CN/TrainingService/LocalMode.md">本机</a></li>
        <li><a href="docs/zh_CN/TrainingService/RemoteMachineMode.md">远程计算机</a></li>
Chi Song's avatar
Chi Song committed
156
        <li><b>基于 Kubernetes 的平台</b></li>
157
158
159
            <ul><li><a href="docs/zh_CN/TrainingService/PaiMode.md">OpenPAI</a></li>
            <li><a href="docs/zh_CN/TrainingService/KubeflowMode.md">Kubeflow</a></li>
            <li><a href="docs/zh_CN/TrainingService/FrameworkControllerMode.md">基于 Kubernetes(AKS 等)的 FrameworkController</a></li>
Chi Song's avatar
Chi Song committed
160
            </ul>
Chi Song's avatar
Chi Song committed
161
162
      </ul>
      </td>
Chi Song's avatar
Chi Song committed
163
    </tr> 
Chi Song's avatar
Chi Song committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
      <tr align="center" valign="bottom">
      </td>
      </tr>
      <tr valign="top">
       <td valign="middle">
    <b>参考</b>
      </td>
     <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/zh_CN/sdk_reference.rst">Python API</a></li>
        <li><a href="docs/zh_CN/Tutorial/AnnotationSpec.md">NNI Annotation</a></li>
         <li><a href="docs/zh_CN/Tutorial/Installation.md">支持的操作系统</a></li>
      </ul>
      </td>
       <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/zh_CN/Tuner/CustomizeTuner.md">自定义 Tuner</a></li>
        <li><a href="docs/zh_CN/Assessor/CustomizeAssessor.md">自定义 Assessor</a></li>
      </ul>
      </td>
        <td style="border-top:#FF0000 solid 0px;">
      <ul>
        <li><a href="docs/zh_CN/TrainingService/SupportTrainingService.md">支持训练平台</li>
        <li><a href="docs/zh_CN/TrainingService/HowToImplementTrainingService.md">实现训练平台</a></li>
      </ul>
      </td>     
    </tr> 
Chi Song's avatar
Chi Song committed
191
192
193
194
195
196
197
  </tbody>
</table>

## **安装和验证**

**通过 pip 命令安装**

198
* 当前支持 Linux,MacOS 和 Windows(本机,远程,OpenPAI 模式),在 Ubuntu 16.04 或更高版本,MacOS 10.14.1 以及 Windows 10.1809 上进行了测试。 在 `python >= 3.5` 的环境中,只需要运行 `pip install` 即可完成安装。
Chi Song's avatar
Chi Song committed
199

Chi Song's avatar
Chi Song committed
200
Linux 和 macOS
Chi Song's avatar
Chi Song committed
201
202

```bash
Chi Song's avatar
Chi Song committed
203
204
205
206
207
208
209
python3 -m pip install --upgrade nni
```

Windows

```bash
python -m pip install --upgrade nni
Chi Song's avatar
Chi Song committed
210
211
212
213
214
```

注意:

* 如果需要将 NNI 安装到自己的 home 目录中,可使用 `--user`,这样也不需要任何特殊权限。
215
* 目前,Windows 上的 NNI 支持本机,远程和 OpenPAI 模式。 强烈推荐使用 Anaconda 或 Miniconda 在 Windows 上安装 NNI。
Chi Song's avatar
Chi Song committed
216
* 如果遇到如`Segmentation fault` 这样的任何错误请参考[常见问题](docs/zh_CN/Tutorial/FAQ.md)
Chi Song's avatar
Chi Song committed
217
218
219

**通过源代码安装**

Chi Song's avatar
Chi Song committed
220
* 当前支持 Linux(Ubuntu 16.04 或更高版本),MacOS(10.14.1)以及 Windows 10(1809 版)。
Chi Song's avatar
Chi Song committed
221

Chi Song's avatar
Chi Song committed
222
Linux 和 MacOS
Chi Song's avatar
Chi Song committed
223

Chi Song's avatar
Chi Song committed
224
225
226
*`python >= 3.5` 的环境中运行命令: `git``wget`,确保安装了这两个组件。

```bash
Chi Song's avatar
Chi Song committed
227
    git clone -b v1.2 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
228
229
230
231
232
233
234
235
236
    cd nni
    source install.sh
```

Windows

*`python >=3.5` 的环境中运行命令: `git``PowerShell`,确保安装了这两个组件。

```bash
Chi Song's avatar
Chi Song committed
237
  git clone -b v1.2 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
238
  cd nni
Chi Song's avatar
Chi Song committed
239
  powershell -ExecutionPolicy Bypass -file install.ps1
Chi Song's avatar
Chi Song committed
240
241
```

Chi Song's avatar
Chi Song committed
242
参考[安装 NNI](docs/zh_CN/Tutorial/Installation.md) 了解系统需求。
Chi Song's avatar
Chi Song committed
243

Chi Song's avatar
Chi Song committed
244
Windows 上参考 [Windows 上使用 NNI](docs/zh_CN/Tutorial/NniOnWindows.md)
Chi Song's avatar
Chi Song committed
245

Chi Song's avatar
Chi Song committed
246
247
**验证安装**

Chi Song's avatar
Chi Song committed
248
以下示例 Experiment 依赖于 TensorFlow 。 在运行前确保安装了 **TensorFlow 1.x**。 注意,**目前不支持 TensorFlow 2.0**
Chi Song's avatar
Chi Song committed
249

Chi Song's avatar
Chi Song committed
250
* 通过克隆源代码下载示例。
Chi Song's avatar
Chi Song committed
251
252

```bash
Chi Song's avatar
Chi Song committed
253
    git clone -b v1.2 https://github.com/Microsoft/nni.git
Chi Song's avatar
Chi Song committed
254
255
```

Chi Song's avatar
Chi Song committed
256
Linux 和 MacOS
Chi Song's avatar
Chi Song committed
257
258

* 运行 MNIST 示例。
Chi Song's avatar
Chi Song committed
259
260

```bash
Chi Song's avatar
Chi Song committed
261
    nnictl create --config nni/examples/trials/mnist-tfv1/config.yml
Chi Song's avatar
Chi Song committed
262
263
```

Chi Song's avatar
Chi Song committed
264
265
266
267
268
Windows

* 运行 MNIST 示例。

```bash
Chi Song's avatar
Chi Song committed
269
    nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml
Chi Song's avatar
Chi Song committed
270
271
```

Chi Song's avatar
Chi Song committed
272
273
* 在命令行中等待输出 `INFO: Successfully started experiment!`。 此消息表明 Experiment 已成功启动。 通过命令行输出的 `Web UI url` 来访问 Experiment 的界面。

Chi Song's avatar
Chi Song committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
```text
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
         commands                       description

1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
-----------------------------------------------------------------------
```

Chi Song's avatar
Chi Song committed
301
* 在浏览器中打开 `Web UI url`,可看到下图的 Experiment 详细信息,以及所有的 Trial 任务。 查看[这里](docs/zh_CN/Tutorial/WebUI.md)的更多页面。
Chi Song's avatar
Chi Song committed
302
303
304
305
306
307
308
309

<table style="border: none">
    <th><img src="./docs/img/webui_overview_page.png" alt="drawing" width="395"/></th>
    <th><img src="./docs/img/webui_trialdetail_page.png" alt="drawing" width="410"/></th>
</table>

## **文档**

Chi Song's avatar
Chi Song committed
310
311
312
* 要了解 NNI,请阅读 [NNI 概述](https://nni.readthedocs.io/zh/latest/Overview.html)
* 要熟悉如何使用 NNI,请阅读[文档](https://nni.readthedocs.io/zh/latest/index.html)
* 要安装 NNI,请参阅[安装 NNI](docs/zh_CN/Tutorial/Installation.md)
Chi Song's avatar
Chi Song committed
313
314
315

## **贡献**

Chi Song's avatar
Chi Song committed
316
本项目欢迎任何贡献和建议。 大多数贡献都需要你同意参与者许可协议(CLA),来声明你有权,并实际上授予我们有权使用你的贡献。 有关详细信息,请访问 https://cla.microsoft.com。
Chi Song's avatar
Chi Song committed
317

Chi Song's avatar
Chi Song committed
318
当你提交拉取请求时,CLA机器人会自动检查你是否需要提供CLA,并修饰这个拉取请求(例如,标签、注释)。 只需要按照机器人提供的说明进行操作即可。 CLA 只需要同意一次,就能应用到所有的代码仓库上。
Chi Song's avatar
Chi Song committed
319

Chi Song's avatar
Chi Song committed
320
该项目采用了 [ Microsoft 开源行为准则 ](https://opensource.microsoft.com/codeofconduct/)。 有关详细信息,请参阅[常见问题解答](https://opensource.microsoft.com/codeofconduct/faq/),如有任何疑问或意见可联系 opencode@microsoft.com。
Chi Song's avatar
Chi Song committed
321

Chi Song's avatar
Chi Song committed
322
323
324
熟悉贡献协议后,即可按照 NNI 开发人员教程,创建第一个 PR =):

* 推荐新贡献者先找到标有 ['good first issue'](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22)['help-wanted'](https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22) 标签的 Issue。这些都比较简单,可以从这些问题开始。
Chi Song's avatar
Chi Song committed
325
* [NNI 开发环境安装教程](docs/zh_CN/Tutorial/SetupNniDeveloperEnvironment.md)
326
* [如何调试](docs/zh_CN/Tutorial/HowToDebug.md)
Chi Song's avatar
Chi Song committed
327
328
* [自定义 Tuner](docs/zh_CN/Tuner/CustomizeTuner.md)
* [实现定制的训练平台](docs/zh_CN/TrainingService/HowToImplementTrainingService.md)
Chi Song's avatar
Chi Song committed
329
330
* [在 NNI 上实现新的 NAS Trainer](https://github.com/microsoft/nni/blob/master/docs/en_US/NAS/NasInterface.md#implement-a-new-nas-trainer-on-nni)
* [自定义 Advisor](docs/zh_CN/Tuner/CustomizeAdvisor.md)
Chi Song's avatar
Chi Song committed
331

Chi Song's avatar
Chi Song committed
332
333
334
335
336
337
338
339
## **其它代码库和参考**

经作者许可的一些 NNI 用法示例和相关文档。

* ### **外部代码库**
   
   * 在 NNI 中运行 [ENAS](examples/tuners/enas_nni/README_zh_CN.md)
   * 在 NNI 中运行 [神经网络架构结构搜索](examples/trials/nas_cifar10/README_zh_CN.md) 
Chi Song's avatar
Chi Song committed
340
   * [NNI 中的自动特征工程](examples/feature_engineering/auto-feature-engineering/README_zh_CN.md) 
Chi Song's avatar
Chi Song committed
341
   * 使用 NNI 的 [矩阵分解超参调优](https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb)
Chi Song's avatar
Chi Song committed
342
   * [scikit-nni](https://github.com/ksachdeva/scikit-nni) 使用 NNI 为 scikit-learn 开发的超参搜索。
Chi Song's avatar
Chi Song committed
343
344
345
346
347
348
349
* ### **相关文章**
   
   * [超参数优化的对比](docs/zh_CN/CommunitySharings/HpoComparision.md)
   * [神经网络结构搜索的对比](docs/zh_CN/CommunitySharings/NasComparision.md)
   * [并行化顺序算法:TPE](docs/zh_CN/CommunitySharings/ParallelizingTpeSearch.md)
   * [使用 NNI 为 SVD 自动调参](docs/zh_CN/CommunitySharings/RecommendersSvd.md)
   * [使用 NNI 为 SPTAG 自动调参](docs/zh_CN/CommunitySharings/SptagAutoTune.md)
Chi Song's avatar
Chi Song committed
350
   * [使用 NNI 为 scikit-learn 查找超参](https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1)
Chi Song's avatar
Chi Song committed
351
   * **博客** - [AutoML 工具(Advisor,NNI 与 Google Vizier)的对比](http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90) 作者:[@gaocegege](https://github.com/gaocegege) - kubeflow/katib 的设计与实现的总结与分析章节
Chi Song's avatar
Chi Song committed
352

Chi Song's avatar
Chi Song committed
353
## **反馈**
Chi Song's avatar
Chi Song committed
354

Chi Song's avatar
Chi Song committed
355
*[Gitter](https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) 中参与讨论。
Chi Song's avatar
Chi Song committed
356
* [在 GitHub 上提交问题](https://github.com/microsoft/nni/issues/new/choose)
Chi Song's avatar
Chi Song committed
357
*[Stack Overflow](https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true) 上使用 nni 标签提问。
Chi Song's avatar
Chi Song committed
358

Chi Song's avatar
Chi Song committed
359
360
361
362
363
364
365
366
367
368
369
## 相关项目

以探索先进技术和开放为目标,[Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-research-group-asia/) 还发布了一些相关的开源项目。

* [OpenPAI](https://github.com/Microsoft/pai):作为开源平台,提供了完整的 AI 模型训练和资源管理能力,能轻松扩展,并支持各种规模的私有部署、云和混合环境。
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller):开源的通用 Kubernetes Pod 控制器,通过单个控制器来编排 Kubernetes 上所有类型的应用。
* [MMdnn](https://github.com/Microsoft/MMdnn):一个完整、跨框架的解决方案,能够转换、可视化、诊断深度神经网络模型。 MMdnn 中的 "MM" 表示 model management(模型管理),而 "dnn" 是 deep neural network(深度神经网络)的缩写。
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) 是用于大规模向量的最近邻搜索场景的开源库。

我们鼓励研究人员和学生利用这些项目来加速 AI 开发和研究。

Chi Song's avatar
Chi Song committed
370
371
## **许可协议**

Chi Song's avatar
Chi Song committed
372
代码库遵循 [MIT 许可协议](LICENSE)