test_strategy.py 5.8 KB
Newer Older
1
import random
2
import sys
3
4
5
6
7
8
9
import time
import threading
from typing import *

import nni.retiarii.execution.api
import nni.retiarii.nn.pytorch as nn
import nni.retiarii.strategy as strategy
10
import pytest
11
12
13
14
15
16
import torch
import torch.nn.functional as F
from nni.retiarii import Model
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.execution import wait_models
from nni.retiarii.execution.interface import AbstractExecutionEngine, WorkerInfo, MetricData, AbstractGraphListener
17
from nni.retiarii.graph import DebugEvaluator, ModelStatus
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from nni.retiarii.nn.pytorch.mutator import process_inline_mutation


class MockExecutionEngine(AbstractExecutionEngine):
    def __init__(self, failure_prob=0.):
        self.models = []
        self.failure_prob = failure_prob
        self._resource_left = 4

    def _model_complete(self, model: Model):
        time.sleep(random.uniform(0, 1))
        if random.uniform(0, 1) < self.failure_prob:
            model.status = ModelStatus.Failed
        else:
            model.metric = random.uniform(0, 1)
            model.status = ModelStatus.Trained
        self._resource_left += 1

    def submit_models(self, *models: Model) -> None:
        for model in models:
            self.models.append(model)
            self._resource_left -= 1
            threading.Thread(target=self._model_complete, args=(model, )).start()

42
43
44
    def list_models(self) -> List[Model]:
        return self.models

45
46
47
    def query_available_resource(self) -> Union[List[WorkerInfo], int]:
        return self._resource_left

48
49
50
    def budget_exhausted(self) -> bool:
        pass

51
52
53
54
55
56
57
58
    def register_graph_listener(self, listener: AbstractGraphListener) -> None:
        pass

    def trial_execute_graph(cls) -> MetricData:
        pass


def _reset_execution_engine(engine=None):
59
60
61
62
    # Use the new NAS reset
    # nni.retiarii.execution.api._execution_engine = engine
    import nni.nas.execution.api
    nni.nas.execution.api._execution_engine = engine
63
64
65


class Net(nn.Module):
66
    def __init__(self, hidden_size=32, diff_size=False):
67
68
69
70
71
72
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.LayerChoice([
            nn.Linear(4*4*50, hidden_size, bias=True),
            nn.Linear(4*4*50, hidden_size, bias=False)
73
        ], label='fc1')
74
75
76
        self.fc2 = nn.LayerChoice([
            nn.Linear(hidden_size, 10, bias=False),
            nn.Linear(hidden_size, 10, bias=True)
77
        ] + ([] if not diff_size else [nn.Linear(hidden_size, 10, bias=False)]), label='fc2')
78
79
80
81
82
83
84
85
86
87
88
89

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


90
91
def _get_model_and_mutators(**kwargs):
    base_model = Net(**kwargs)
92
93
    script_module = torch.jit.script(base_model)
    base_model_ir = convert_to_graph(script_module, base_model)
94
    base_model_ir.evaluator = DebugEvaluator()
95
96
97
98
99
100
101
102
103
104
105
106
107
    mutators = process_inline_mutation(base_model_ir)
    return base_model_ir, mutators


def test_grid_search():
    gridsearch = strategy.GridSearch()
    engine = MockExecutionEngine()
    _reset_execution_engine(engine)
    gridsearch.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    selection = set()
    for model in engine.models:
        selection.add((
108
109
            model.graphs['_model__fc1'].hidden_nodes[0].operation.parameters['bias'],
            model.graphs['_model__fc2'].hidden_nodes[0].operation.parameters['bias']
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        ))
    assert len(selection) == 4
    _reset_execution_engine()


def test_random_search():
    random = strategy.Random()
    engine = MockExecutionEngine()
    _reset_execution_engine(engine)
    random.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    selection = set()
    for model in engine.models:
        selection.add((
124
125
            model.graphs['_model__fc1'].hidden_nodes[0].operation.parameters['bias'],
            model.graphs['_model__fc2'].hidden_nodes[0].operation.parameters['bias']
126
127
128
129
130
131
132
133
134
135
136
        ))
    assert len(selection) == 4
    _reset_execution_engine()


def test_evolution():
    evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, on_failure='ignore')
    engine = MockExecutionEngine(failure_prob=0.2)
    _reset_execution_engine(engine)
    evolution.run(*_get_model_and_mutators())
    wait_models(*engine.models)
137
138
139
140
141
142
143
    _reset_execution_engine()

    evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, dedup=True, on_failure='ignore')
    engine = MockExecutionEngine(failure_prob=0.2)
    _reset_execution_engine(engine)
    evolution.run(*_get_model_and_mutators())
    wait_models(*engine.models)
144
145
146
147
148
149
150
151
152
153
    _reset_execution_engine()

    evolution = strategy.RegularizedEvolution(population_size=5, sample_size=3, cycles=10, mutation_prob=0.5, on_failure='worst')
    engine = MockExecutionEngine(failure_prob=0.4)
    _reset_execution_engine(engine)
    evolution.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    _reset_execution_engine()


154
155
156
157
158
159
160
161
def test_rl():
    rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10)
    engine = MockExecutionEngine(failure_prob=0.2)
    _reset_execution_engine(engine)
    rl.run(*_get_model_and_mutators(diff_size=True))
    wait_models(*engine.models)
    _reset_execution_engine()

162
    rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10)
163
164
165
166
167
168
169
    engine = MockExecutionEngine(failure_prob=0.2)
    _reset_execution_engine(engine)
    rl.run(*_get_model_and_mutators())
    wait_models(*engine.models)
    _reset_execution_engine()


170
171
172
173
if __name__ == '__main__':
    test_grid_search()
    test_random_search()
    test_evolution()
174
    test_rl()