retrain.py 7.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import time
import math
from datetime import timedelta
import torch
from torch import nn as nn
from nni.nas.pytorch.utils import AverageMeter

def cross_entropy_with_label_smoothing(pred, target, label_smoothing=0.1):
    logsoftmax = nn.LogSoftmax()
    n_classes = pred.size(1)
    # convert to one-hot
    target = torch.unsqueeze(target, 1)
    soft_target = torch.zeros_like(pred)
    soft_target.scatter_(1, target, 1)
    # label smoothing
    soft_target = soft_target * (1 - label_smoothing) + label_smoothing / n_classes
    return torch.mean(torch.sum(- soft_target * logsoftmax(pred), 1))

def accuracy(output, target, topk=(1,)):
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = []
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
        res.append(correct_k.mul_(100.0 / batch_size))
    return res


class Retrain:
    def __init__(self, model, optimizer, device, data_provider, n_epochs):
        self.model = model
        self.optimizer = optimizer
        self.device = device
        self.train_loader = data_provider.train
        self.valid_loader = data_provider.valid
        self.test_loader = data_provider.test
        self.n_epochs = n_epochs
        self.criterion = nn.CrossEntropyLoss()

    def run(self):
        self.model = torch.nn.DataParallel(self.model)
        self.model.to(self.device)
        # train
        self.train()
        # validate
        self.validate(is_test=False)
        # test
        self.validate(is_test=True)

    def train_one_epoch(self, adjust_lr_func, train_log_func, label_smoothing=0.1):
        batch_time = AverageMeter('batch_time')
        data_time = AverageMeter('data_time')
        losses = AverageMeter('losses')
        top1 = AverageMeter('top1')
        top5 = AverageMeter('top5')
        self.model.train()
        end = time.time()
        for i, (images, labels) in enumerate(self.train_loader):
            data_time.update(time.time() - end)
            new_lr = adjust_lr_func(i)
            images, labels = images.to(self.device), labels.to(self.device)
            output = self.model(images)
            if label_smoothing > 0:
                loss = cross_entropy_with_label_smoothing(output, labels, label_smoothing)
            else:
                loss = self.criterion(output, labels)
            acc1, acc5 = accuracy(output, labels, topk=(1, 5))
            losses.update(loss, images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))

            # compute gradient and do SGD step
            self.model.zero_grad()  # or self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            if i % 10 == 0 or i + 1 == len(self.train_loader):
                batch_log = train_log_func(i, batch_time, data_time, losses, top1, top5, new_lr)
                print(batch_log)
        return top1, top5

    def train(self, validation_frequency=1):
        best_acc = 0
        nBatch = len(self.train_loader)

        def train_log_func(epoch_, i, batch_time, data_time, losses, top1, top5, lr):
                batch_log = 'Train [{0}][{1}/{2}]\t' \
                            'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
                            'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' \
                            'Loss {losses.val:.4f} ({losses.avg:.4f})\t' \
                            'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})'. \
                    format(epoch_ + 1, i, nBatch - 1,
                        batch_time=batch_time, data_time=data_time, losses=losses, top1=top1)
                batch_log += '\tTop-5 acc {top5.val:.3f} ({top5.avg:.3f})'.format(top5=top5)
                batch_log += '\tlr {lr:.5f}'.format(lr=lr)
                return batch_log
        
        def adjust_learning_rate(n_epochs, optimizer, epoch, batch=0, nBatch=None):
            """ adjust learning of a given optimizer and return the new learning rate """
            # cosine
            T_total = n_epochs * nBatch
            T_cur = epoch * nBatch + batch
            # init_lr = 0.05
            new_lr = 0.5 * 0.05 * (1 + math.cos(math.pi * T_cur / T_total))
            for param_group in optimizer.param_groups:
                param_group['lr'] = new_lr
            return new_lr

        for epoch in range(self.n_epochs):
            print('\n', '-' * 30, 'Train epoch: %d' % (epoch + 1), '-' * 30, '\n')
            end = time.time()
            train_top1, train_top5 = self.train_one_epoch(
                lambda i: adjust_learning_rate(self.n_epochs, self.optimizer, epoch, i, nBatch),
                lambda i, batch_time, data_time, losses, top1, top5, new_lr:
                train_log_func(epoch, i, batch_time, data_time, losses, top1, top5, new_lr),
            )
            time_per_epoch = time.time() - end
            seconds_left = int((self.n_epochs - epoch - 1) * time_per_epoch)
            print('Time per epoch: %s, Est. complete in: %s' % (
                str(timedelta(seconds=time_per_epoch)),
                str(timedelta(seconds=seconds_left))))
            
            if (epoch + 1) % validation_frequency == 0:
                val_loss, val_acc, val_acc5 = self.validate(is_test=False)
                is_best = val_acc > best_acc
                best_acc = max(best_acc, val_acc)
                val_log = 'Valid [{0}/{1}]\tloss {2:.3f}\ttop-1 acc {3:.3f} ({4:.3f})'.\
                    format(epoch + 1, self.n_epochs, val_loss, val_acc, best_acc)
                val_log += '\ttop-5 acc {0:.3f}\tTrain top-1 {top1.avg:.3f}\ttop-5 {top5.avg:.3f}'.\
                    format(val_acc5, top1=train_top1, top5=train_top5)
                print(val_log)
            else:
                is_best = False

    def validate(self, is_test=True):
        if is_test:
            data_loader = self.test_loader
        else:
            data_loader = self.valid_loader
        self.model.eval()
        batch_time = AverageMeter('batch_time')
        losses = AverageMeter('losses')
        top1 = AverageMeter('top1')
        top5 = AverageMeter('top5')

        end = time.time()
        with torch.no_grad():
            for i, (images, labels) in enumerate(data_loader):
                images, labels = images.to(self.device), labels.to(self.device)
                # compute output
                output = self.model(images)
                loss = self.criterion(output, labels)
                # measure accuracy and record loss
                acc1, acc5 = accuracy(output, labels, topk=(1, 5))
                losses.update(loss, images.size(0))
                top1.update(acc1[0], images.size(0))
                top5.update(acc5[0], images.size(0))
                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                if i % 10 == 0 or i + 1 == len(data_loader):
                    if is_test:
                        prefix = 'Test'
                    else:
                        prefix = 'Valid'
                    test_log = prefix + ': [{0}/{1}]\t'\
                                        'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'\
                                        'Loss {loss.val:.4f} ({loss.avg:.4f})\t'\
                                        'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})'.\
                        format(i, len(data_loader) - 1, batch_time=batch_time, loss=losses, top1=top1)
                    test_log += '\tTop-5 acc {top5.val:.3f} ({top5.avg:.3f})'.format(top5=top5)
                    print(test_log)
        return losses.avg, top1.avg, top5.avg