pruning_speedup.py 6.78 KB
Newer Older
J-shang's avatar
J-shang committed
1
"""
2
Speedup Model with Mask
J-shang's avatar
J-shang committed
3
4
5
6
7
8
9
10
11
12
13
14
========================

Introduction
------------

Pruning algorithms usually use weight masks to simulate the real pruning. Masks can be used
to check model performance of a specific pruning (or sparsity), but there is no real speedup.
Since model speedup is the ultimate goal of model pruning, we try to provide a tool to users
to convert a model to a smaller one based on user provided masks (the masks come from the
pruning algorithms).

There are two types of pruning. One is fine-grained pruning, it does not change the shape of weights,
15
and input/output tensors. Sparse kernel is required to speedup a fine-grained pruned layer.
J-shang's avatar
J-shang committed
16
The other is coarse-grained pruning (e.g., channels), shape of weights and input/output tensors usually change due to such pruning.
17
To speedup this kind of pruning, there is no need to use sparse kernel, just replace the pruned layer with smaller one.
J-shang's avatar
J-shang committed
18
19
20
21
22
23
Since the support of sparse kernels in community is limited,
we only support the speedup of coarse-grained pruning and leave the support of fine-grained pruning in future.

Design and Implementation
-------------------------

24
To speedup a model, the pruned layers should be replaced, either replaced with smaller layer for coarse-grained mask,
J-shang's avatar
J-shang committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
or replaced with sparse kernel for fine-grained mask. Coarse-grained mask usually changes the shape of weights or input/output tensors,
thus, we should do shape inference to check are there other unpruned layers should be replaced as well due to shape change.
Therefore, in our design, there are two main steps: first, do shape inference to find out all the modules that should be replaced;
second, replace the modules.

The first step requires topology (i.e., connections) of the model, we use ``jit.trace`` to obtain the model graph for PyTorch.
The new shape of module is auto-inference by NNI, the unchanged parts of outputs during forward and inputs during backward are prepared for reduct.
For each type of module, we should prepare a function for module replacement.
The module replacement function returns a newly created module which is smaller.

Usage
-----

"""

# %%
# Generate a mask for the model at first.
# We usually use a NNI pruner to generate the masks then use ``ModelSpeedup`` to compact the model.
# But in fact ``ModelSpeedup`` is a relatively independent tool, so you can use it independently.

import torch
46
from nni_assets.compression.mnist_model import TorchModel, device
J-shang's avatar
J-shang committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

model = TorchModel().to(device)
# masks = {layer_name: {'weight': weight_mask, 'bias': bias_mask}}
conv1_mask = torch.ones_like(model.conv1.weight.data)
# mask the first three output channels in conv1
conv1_mask[0: 3] = 0
masks = {'conv1': {'weight': conv1_mask}}

# %%
# Show the original model structure.
print(model)

# %%
# Roughly test the original model inference speed.
import time
start = time.time()
model(torch.rand(128, 1, 28, 28).to(device))
print('Original Model - Elapsed Time : ', time.time() - start)

# %%
67
# Speedup the model and show the model structure after speedup.
J-shang's avatar
J-shang committed
68
69
70
71
72
from nni.compression.pytorch import ModelSpeedup
ModelSpeedup(model, torch.rand(10, 1, 28, 28).to(device), masks).speedup_model()
print(model)

# %%
73
# Roughly test the model after speedup inference speed.
J-shang's avatar
J-shang committed
74
75
76
77
78
79
start = time.time()
model(torch.rand(128, 1, 28, 28).to(device))
print('Speedup Model - Elapsed Time : ', time.time() - start)

# %%
# For combining usage of ``Pruner`` masks generation with ``ModelSpeedup``,
80
# please refer to :doc:`Pruning Quick Start <pruning_quick_start_mnist>`.
J-shang's avatar
J-shang committed
81
82
83
84
85
86
87
88
89
#
# NOTE: The current implementation supports PyTorch 1.3.1 or newer.
#
# Limitations
# -----------
#
# For PyTorch we can only replace modules, if functions in ``forward`` should be replaced,
# our current implementation does not work. One workaround is make the function a PyTorch module.
#
90
# If you want to speedup your own model which cannot supported by the current implementation,
J-shang's avatar
J-shang committed
91
92
93
94
95
# you need implement the replace function for module replacement, welcome to contribute.
#
# Speedup Results of Examples
# ---------------------------
#
96
# The code of these experiments can be found :githublink:`here <examples/model_compress/pruning/legacy/speedup/model_speedup.py>`.
J-shang's avatar
J-shang committed
97
#
98
# These result are tested on the `legacy pruning framework <https://nni.readthedocs.io/en/v2.6/Compression/pruning.html>`_, new results will coming soon.
J-shang's avatar
J-shang committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#
# slim pruner example
# ^^^^^^^^^^^^^^^^^^^
#
# on one V100 GPU,
# input tensor: ``torch.randn(64, 3, 32, 32)``
#
# .. list-table::
#    :header-rows: 1
#    :widths: auto
#
#    * - Times
#      - Mask Latency
#      - Speedup Latency
#    * - 1
#      - 0.01197
#      - 0.005107
#    * - 2
#      - 0.02019
#      - 0.008769
#    * - 4
#      - 0.02733
#      - 0.014809
#    * - 8
#      - 0.04310
#      - 0.027441
#    * - 16
#      - 0.07731
#      - 0.05008
#    * - 32
#      - 0.14464
#      - 0.10027
#
# fpgm pruner example
# ^^^^^^^^^^^^^^^^^^^
#
# on cpu,
# input tensor: ``torch.randn(64, 1, 28, 28)``\ ,
# too large variance
#
# .. list-table::
#    :header-rows: 1
#    :widths: auto
#
#    * - Times
#      - Mask Latency
#      - Speedup Latency
#    * - 1
#      - 0.01383
#      - 0.01839
#    * - 2
#      - 0.01167
#      - 0.003558
#    * - 4
#      - 0.01636
#      - 0.01088
#    * - 40
#      - 0.14412
#      - 0.08268
#    * - 40
#      - 1.29385
#      - 0.14408
#    * - 40
#      - 0.41035
#      - 0.46162
#    * - 400
#      - 6.29020
#      - 5.82143
#
# l1filter pruner example
# ^^^^^^^^^^^^^^^^^^^^^^^
#
# on one V100 GPU,
# input tensor: ``torch.randn(64, 3, 32, 32)``
#
# .. list-table::
#    :header-rows: 1
#    :widths: auto
#
#    * - Times
#      - Mask Latency
#      - Speedup Latency
#    * - 1
#      - 0.01026
#      - 0.003677
#    * - 2
#      - 0.01657
#      - 0.008161
#    * - 4
#      - 0.02458
#      - 0.020018
#    * - 8
#      - 0.03498
#      - 0.025504
#    * - 16
#      - 0.06757
#      - 0.047523
#    * - 32
#      - 0.10487
#      - 0.086442
#
# APoZ pruner example
# ^^^^^^^^^^^^^^^^^^^
#
# on one V100 GPU,
# input tensor: ``torch.randn(64, 3, 32, 32)``
#
# .. list-table::
#    :header-rows: 1
#    :widths: auto
#
#    * - Times
#      - Mask Latency
#      - Speedup Latency
#    * - 1
#      - 0.01389
#      - 0.004208
#    * - 2
#      - 0.01628
#      - 0.008310
#    * - 4
#      - 0.02521
#      - 0.014008
#    * - 8
#      - 0.03386
#      - 0.023923
#    * - 16
#      - 0.06042
#      - 0.046183
#    * - 32
#      - 0.12421
#      - 0.087113
#
# SimulatedAnnealing pruner example
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# In this experiment, we use SimulatedAnnealing pruner to prune the resnet18 on the cifar10 dataset.
# We measure the latencies and accuracies of the pruned model under different sparsity ratios, as shown in the following figure.
# The latency is measured on one V100 GPU and the input tensor is  ``torch.randn(128, 3, 32, 32)``.
#
# .. image:: ../../img/SA_latency_accuracy.png