test_evaluator.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

from __future__ import annotations

from pathlib import Path
from typing import Callable
import pytest

import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger

import torch
from torch.nn import Module
import torch.nn.functional as F
from torch.optim import Optimizer
from torch.optim.lr_scheduler import ExponentialLR, _LRScheduler
from torch.utils.data import random_split, DataLoader
from torchmetrics.functional import accuracy
from torchvision.datasets import MNIST
from torchvision import transforms

import nni
from nni.algorithms.compression.v2.pytorch.utils.evaluator import (
    TorchEvaluator,
    LightningEvaluator,
    TensorHook,
    ForwardHook,
    BackwardHook,
)


class SimpleTorchModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, 3)
        self.bn1 = torch.nn.BatchNorm2d(16)
        self.conv2 = torch.nn.Conv2d(16, 8, 3, groups=4)
        self.bn2 = torch.nn.BatchNorm2d(8)
        self.conv3 = torch.nn.Conv2d(16, 8, 3)
        self.bn3 = torch.nn.BatchNorm2d(8)
        self.fc1 = torch.nn.Linear(8 * 24 * 24, 100)
        self.fc2 = torch.nn.Linear(100, 10)

    def forward(self, x: torch.Tensor):
        x = self.bn1(self.conv1(x))
        x = self.bn2(self.conv2(x)) + self.bn3(self.conv3(x))
        x = self.fc2(self.fc1(x.reshape(x.shape[0], -1)))
        return F.log_softmax(x, -1)


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def training_model(model: Module, optimizer: Optimizer, criterion: Callable, scheduler: _LRScheduler,
                   max_steps: int | None = None, max_epochs: int | None = None):
    model.train()

    # prepare data
    data_dir = Path(__file__).parent / 'data'
    MNIST(data_dir, train=True, download=True)
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    mnist_train = MNIST(data_dir, train=True, transform=transform)
    train_dataloader = DataLoader(mnist_train, batch_size=32)

    max_epochs = max_epochs if max_epochs else 1
    max_steps = max_steps if max_steps else 10
    current_steps = 0

    # training
    for _ in range(max_epochs):
        for x, y in train_dataloader:
            optimizer.zero_grad()
            x, y = x.to(device), y.to(device)
            logits = model(x)
            loss: torch.Tensor = criterion(logits, y)
            loss.backward()
            optimizer.step()
            current_steps += 1
            if max_steps and current_steps == max_steps:
                return
        scheduler.step()


def evaluating_model(model: Module):
    model.eval()

    # prepare data
    data_dir = Path(__file__).parent / 'data'
    MNIST(data_dir, train=False, download=True)
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    mnist_test = MNIST(data_dir, train=False, transform=transform)
    test_dataloader = DataLoader(mnist_test, batch_size=32)

    # testing
    correct = 0
    with torch.no_grad():
        for x, y in test_dataloader:
            x, y = x.to(device), y.to(device)
            logits = model(x)
            preds = torch.argmax(logits, dim=1)
            correct += preds.eq(y.view_as(preds)).sum().item()
    return correct / len(mnist_test)


class SimpleLightningModel(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.model = SimpleTorchModel()
        self.count = 0

    def forward(self, x):
        print(self.count)
        self.count += 1
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        self.log("train_loss", loss)
        return loss

    def evaluate(self, batch, stage=None):
        x, y = batch
        logits = self(x)
        loss = F.nll_loss(logits, y)
        preds = torch.argmax(logits, dim=1)
        acc = accuracy(preds, y)

        if stage:
            self.log(f"{stage}_loss", loss, prog_bar=True)
            self.log(f"{stage}_acc", acc, prog_bar=True)

    def validation_step(self, batch, batch_idx):
        self.evaluate(batch, "val")

    def test_step(self, batch, batch_idx):
        self.evaluate(batch, "test")

    def configure_optimizers(self):
        optimizer = nni.trace(torch.optim.SGD)(
            self.parameters(),
            lr=0.01,
            momentum=0.9,
            weight_decay=5e-4,
        )
        scheduler_dict = {
            "scheduler": nni.trace(ExponentialLR)(
                optimizer,
                0.1,
            ),
            "interval": "epoch",
        }
        return {"optimizer": optimizer, "lr_scheduler": scheduler_dict}


class MNISTDataModule(pl.LightningDataModule):
    def __init__(self, data_dir: str = "./"):
        super().__init__()
        self.data_dir = data_dir
        self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

    def prepare_data(self):
        # download
        MNIST(self.data_dir, train=True, download=True)
        MNIST(self.data_dir, train=False, download=True)

    def setup(self, stage: str | None = None):
        # Assign train/val datasets for use in dataloaders
        if stage == "fit" or stage is None:
            mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
            self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])

        # Assign test dataset for use in dataloader(s)
        if stage == "test" or stage is None:
            self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)

        if stage == "predict" or stage is None:
            self.mnist_predict = MNIST(self.data_dir, train=False, transform=self.transform)

    def train_dataloader(self):
        return DataLoader(self.mnist_train, batch_size=32)

    def val_dataloader(self):
        return DataLoader(self.mnist_val, batch_size=32)

    def test_dataloader(self):
        return DataLoader(self.mnist_test, batch_size=32)

    def predict_dataloader(self):
        return DataLoader(self.mnist_predict, batch_size=32)


optimizer_before_step_flag = False
optimizer_after_step_flag = False
loss_flag = False

def optimizer_before_step_patch():
    global optimizer_before_step_flag
    optimizer_before_step_flag = True

def optimizer_after_step_patch():
    global optimizer_after_step_flag
    optimizer_after_step_flag = True

def loss_patch(t: torch.Tensor):
    global loss_flag
    loss_flag = True
    return t

def tensor_hook_factory(buffer: list):
    def hook_func(t: torch.Tensor):
        buffer.append(True)
    return hook_func

def forward_hook_factory(buffer: list):
    def hook_func(module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor):
        buffer.append(True)
    return hook_func

def backward_hook_factory(buffer: list):
    def hook_func(module: torch.nn.Module, grad_input: torch.Tensor, grad_output: torch.Tensor):
        buffer.append(True)
    return hook_func

def reset_flags():
    global optimizer_before_step_flag, optimizer_after_step_flag, loss_flag
    optimizer_before_step_flag = False
    optimizer_after_step_flag = False
    loss_flag = False

def assert_flags():
    global optimizer_before_step_flag, optimizer_after_step_flag, loss_flag
    assert optimizer_before_step_flag, 'Evaluator patch optimizer before step failed.'
    assert optimizer_after_step_flag, 'Evaluator patch optimizer after step failed.'
    assert loss_flag, 'Evaluator patch loss failed.'


def create_lighting_evaluator():
    pl_model = SimpleLightningModel()
    pl_trainer = nni.trace(pl.Trainer)(
        max_epochs=1,
        max_steps=10,
        logger=TensorBoardLogger(Path(__file__).parent / 'lightning_logs', name="resnet"),
    )
    pl_trainer.num_sanity_val_steps = 0
    pl_data = nni.trace(MNISTDataModule)(data_dir=Path(__file__).parent / 'data')
    evaluator = LightningEvaluator(pl_trainer, pl_data)
    evaluator._init_optimizer_helpers(pl_model)
    return evaluator


def create_pytorch_evaluator():
    model = SimpleTorchModel()
    optimizer = nni.trace(torch.optim.SGD)(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    lr_scheduler = nni.trace(ExponentialLR)(optimizer, 0.1)
    evaluator = TorchEvaluator(training_model, optimizer, F.nll_loss, lr_scheduler, evaluating_func=evaluating_model)
    evaluator._init_optimizer_helpers(model)
    return evaluator


@pytest.mark.parametrize("evaluator_type", ['lightning', 'pytorch'])
def test_evaluator(evaluator_type: str):
    if evaluator_type == 'lightning':
        evaluator = create_lighting_evaluator()
        model = SimpleLightningModel()
        evaluator.bind_model(model)
        tensor_hook = TensorHook(model.model.conv1.weight, 'model.conv1.weight', tensor_hook_factory)
        forward_hook = ForwardHook(model.model.conv1, 'model.conv1', forward_hook_factory)
        backward_hook = BackwardHook(model.model.conv1, 'model.conv1', backward_hook_factory)
    elif evaluator_type == 'pytorch':
        evaluator = create_pytorch_evaluator()
        model = SimpleTorchModel().to(device)
        evaluator.bind_model(model)
        tensor_hook = TensorHook(model.conv1.weight, 'conv1.weight', tensor_hook_factory)
        forward_hook = ForwardHook(model.conv1, 'conv1', forward_hook_factory)
        backward_hook = BackwardHook(model.conv1, 'conv1', backward_hook_factory)
    else:
        raise ValueError(f'wrong evaluator_type: {evaluator_type}')

    # test train with patch & hook
    reset_flags()
    evaluator.patch_loss(loss_patch)
    evaluator.patch_optimizer_step([optimizer_before_step_patch], [optimizer_after_step_patch])
    evaluator.register_hooks([tensor_hook, forward_hook, backward_hook])

    evaluator.train(max_steps=1)
    assert_flags()
    assert all([len(hook.buffer) == 1 for hook in [tensor_hook, forward_hook, backward_hook]])

    # test finetune with patch & hook
    reset_flags()
    evaluator.remove_all_hooks()
    evaluator.register_hooks([tensor_hook, forward_hook, backward_hook])

    evaluator.finetune()
    assert_flags()
    assert all([len(hook.buffer) == 10 for hook in [tensor_hook, forward_hook, backward_hook]])