pruning_quick_start_mnist.rst 8.07 KB
Newer Older
J-shang's avatar
J-shang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/pruning_quick_start_mnist.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_pruning_quick_start_mnist.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_pruning_quick_start_mnist.py:


Pruning Quickstart
==================

Model pruning is a technique to reduce the model size and computation by reducing model weight size or intermediate state size.
It usually has following paths:

#. Pre-training a model -> Pruning the model -> Fine-tuning the model
#. Pruning the model aware training -> Fine-tuning the model
#. Pruning the model -> Pre-training the compact model

NNI supports the above three modes and mainly focuses on the pruning stage.
Follow this tutorial for a quick look at how to use NNI to prune a model in a common practice.

.. GENERATED FROM PYTHON SOURCE LINES 17-22

Preparation
-----------

In this tutorial, we use a simple model and pre-train on MNIST dataset.
If you are familiar with defining a model and training in pytorch, you can skip directly to `Pruning Model`_.

.. GENERATED FROM PYTHON SOURCE LINES 22-42

.. code-block:: default


    import torch
    import torch.nn.functional as F
    from torch.optim import SGD

    from scripts.compression_mnist_model import TorchModel, trainer, evaluator, device

    # define the model
    model = TorchModel().to(device)

    # define the optimizer and criterion for pre-training

    optimizer = SGD(model.parameters(), 1e-2)
    criterion = F.nll_loss

    # pre-train and evaluate the model on MNIST dataset
    for epoch in range(3):
        trainer(model, optimizer, criterion)
        evaluator(model)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    Average test loss: 1.8381, Accuracy: 5939/10000 (59%)
    Average test loss: 0.3143, Accuracy: 9045/10000 (90%)
    Average test loss: 0.1928, Accuracy: 9387/10000 (94%)




.. GENERATED FROM PYTHON SOURCE LINES 43-53

Pruning Model
-------------

Using L1NormPruner pruning the model and generating the masks.
Usually, pruners require original model and ``config_list`` as parameters.
Detailed about how to write ``config_list`` please refer ...

This `config_list` means all layers whose type is `Linear` or `Conv2d` will be pruned,
except the layer named `fc3`, because `fc3` is `exclude`.
The final sparsity ratio for each layer is 50%. The layer named `fc3` will not be pruned.

.. GENERATED FROM PYTHON SOURCE LINES 53-62

.. code-block:: default


    config_list = [{
        'sparsity_per_layer': 0.5,
        'op_types': ['Linear', 'Conv2d']
    }, {
        'exclude': True,
        'op_names': ['fc3']
    }]








.. GENERATED FROM PYTHON SOURCE LINES 63-64

Pruners usually require `model` and `config_list` as input arguments.

.. GENERATED FROM PYTHON SOURCE LINES 64-76

.. code-block:: default


    from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner

    pruner = L1NormPruner(model, config_list)
    # show the wrapped model structure
    print(model)
    # compress the model and generate the masks
    _, masks = pruner.compress()
    # show the masks sparsity
    for name, mask in masks.items():
        print(name, ' sparsity: ', '{:.2}'.format(mask['weight'].sum() / mask['weight'].numel()))





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    TorchModel(
      (conv1): PrunerModuleWrapper(
        (module): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
      )
      (conv2): PrunerModuleWrapper(
        (module): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
      )
      (fc1): PrunerModuleWrapper(
        (module): Linear(in_features=256, out_features=120, bias=True)
      )
      (fc2): PrunerModuleWrapper(
        (module): Linear(in_features=120, out_features=84, bias=True)
      )
      (fc3): Linear(in_features=84, out_features=10, bias=True)
    )
    conv1  sparsity:  0.5
    conv2  sparsity:  0.5
    fc1  sparsity:  0.5
    fc2  sparsity:  0.5




.. GENERATED FROM PYTHON SOURCE LINES 77-80

Speed up the original model with masks, note that `ModelSpeedup` requires an unwrapped model.
The model becomes smaller after speed-up,
and reaches a higher sparsity ratio because `ModelSpeedup` will propagate the masks across layers.

.. GENERATED FROM PYTHON SOURCE LINES 80-89

.. code-block:: default


    # need to unwrap the model, if the model is wrapped before speed up
    pruner._unwrap_model()

    # speed up the model
    from nni.compression.pytorch.speedup import ModelSpeedup

    ModelSpeedup(model, torch.rand(3, 1, 28, 28).to(device), masks).speedup_model()





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    /home/ningshang/nni/nni/compression/pytorch/utils/mask_conflict.py:124: UserWarning: This overload of nonzero is deprecated:
            nonzero()
    Consider using one of the following signatures instead:
            nonzero(*, bool as_tuple) (Triggered internally at  /pytorch/torch/csrc/utils/python_arg_parser.cpp:766.)
      all_ones = (w_mask.flatten(1).sum(-1) == count).nonzero().squeeze(1).tolist()
    /home/ningshang/nni/nni/compression/pytorch/speedup/infer_mask.py:262: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the gradient for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations.
      if isinstance(self.output, torch.Tensor) and self.output.grad is not None:
    /home/ningshang/nni/nni/compression/pytorch/speedup/compressor.py:282: UserWarning: The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad attribute won't be populated during autograd.backward(). If you indeed want the gradient for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor instead. See github.com/pytorch/pytorch/pull/30531 for more informations.
      if last_output.grad is not None and tin.grad is not None:




.. GENERATED FROM PYTHON SOURCE LINES 90-91

the model will become real smaller after speed up

.. GENERATED FROM PYTHON SOURCE LINES 91-93

.. code-block:: default

    print(model)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    TorchModel(
      (conv1): Conv2d(1, 3, kernel_size=(5, 5), stride=(1, 1))
      (conv2): Conv2d(3, 8, kernel_size=(5, 5), stride=(1, 1))
      (fc1): Linear(in_features=128, out_features=60, bias=True)
      (fc2): Linear(in_features=60, out_features=42, bias=True)
      (fc3): Linear(in_features=42, out_features=10, bias=True)
    )




.. GENERATED FROM PYTHON SOURCE LINES 94-98

Fine-tuning Compacted Model
---------------------------
Note that if the model has been sped up, you need to re-initialize a new optimizer for fine-tuning.
Because speed up will replace the masked big layers with dense small ones.

.. GENERATED FROM PYTHON SOURCE LINES 98-102

.. code-block:: default


    optimizer = SGD(model.parameters(), 1e-2)
    for epoch in range(3):
        trainer(model, optimizer, criterion)








.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 1 minutes  15.845 seconds)


.. _sphx_glr_download_tutorials_pruning_quick_start_mnist.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: pruning_quick_start_mnist.py <pruning_quick_start_mnist.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: pruning_quick_start_mnist.ipynb <pruning_quick_start_mnist.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_