test_highlevel_apis.py 37.7 KB
Newer Older
1
import math
2
3
import random
import unittest
4
from collections import Counter
5

6
7
import pytest

8
9
10
import nni.retiarii.nn.pytorch as nn
import torch
import torch.nn.functional as F
Yuge Zhang's avatar
Yuge Zhang committed
11
from nni.retiarii import InvalidMutation, Sampler, basic_unit
12
13
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
14
from nni.retiarii.evaluator import FunctionalEvaluator
15
from nni.retiarii.execution.utils import _unpack_if_only_one
16
17
18
from nni.retiarii.graph import Model
from nni.retiarii.nn.pytorch.api import ValueChoice
from nni.retiarii.nn.pytorch.mutator import process_evaluator_mutations, process_inline_mutation, extract_mutation_from_pt_module
19
20
from nni.retiarii.serializer import model_wrapper
from nni.retiarii.utils import ContextStack
21
22


23
class EnumerateSampler(Sampler):
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


42
@basic_unit
43
44
45
46
47
48
49
50
51
52
53
54
55
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


56
57
58
59
60
61
62
63
64
65
def _apply_all_mutators(model, mutators, samplers):
    if not isinstance(samplers, list):
        samplers = [samplers for _ in range(len(mutators))]
    assert len(samplers) == len(mutators)
    model_new = model
    for mutator, sampler in zip(mutators, samplers):
        model_new = mutator.bind_sampler(sampler).apply(model_new)
    return model_new


66
class GraphIR(unittest.TestCase):
67
68
    # graph engine will have an extra mutator for parameter choices
    value_choice_incr = 1
69
70
71
72
73
74
75
76
77
78
79

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

80
81
82
83
84
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

85
    def test_layer_choice(self):
86
        @model_wrapper
87
88
89
90
91
92
93
94
95
96
97
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

98
        model, mutators = self._get_model_with_mutators(Net())
99
        self.assertEqual(len(mutators), 1)
100
        mutator = mutators[0].bind_sampler(EnumerateSampler())
101
102
103
104
105
106
107
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

108
    def test_layer_choice_multiple(self):
109
        @model_wrapper
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            self.assertEqual(self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3)).size(),
                             torch.Size([1, i, 3, 3]))

126
    def test_nested_layer_choice(self):
127
        @model_wrapper
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 3, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 1, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 5, 5, 5]))

153
    def test_input_choice(self):
154
        @model_wrapper
155
156
157
158
159
160
161
162
163
164
165
166
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

167
        model, mutators = self._get_model_with_mutators(Net())
168
        self.assertEqual(len(mutators), 1)
169
        mutator = mutators[0].bind_sampler(EnumerateSampler())
170
171
172
173
174
175
176
177
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
178
        @model_wrapper
179
180
181
182
183
184
185
186
187
188
189
190
191
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
192
            model, mutators = self._get_model_with_mutators(Net(reduction))
193
            self.assertEqual(len(mutators), 1)
194
            mutator = mutators[0].bind_sampler(EnumerateSampler())
195
196
197
198
199
200
201
202
203
204
205
206
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
207
        @model_wrapper
208
209
210
211
212
213
214
215
216
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

217
        model, mutators = self._get_model_with_mutators(Net())
218
        self.assertEqual(len(mutators), 1)
219
        mutator = mutators[0].bind_sampler(EnumerateSampler())
220
221
222
223
224
225
226
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

227
    def test_value_choice_as_parameter(self):
228
        @model_wrapper
229
230
231
232
233
234
235
236
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

237
        model, mutators = self._get_model_with_mutators(Net())
238
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
239
240
241
242
243
244
245
246
247
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
248
        @model_wrapper
249
250
251
252
253
254
255
256
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

257
        model, mutators = self._get_model_with_mutators(Net())
258
259
260
261
        self.assertEqual(len(mutators), self.value_choice_incr + 1)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
262
263
264
265
266
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

267
    def test_value_choice_as_two_parameters(self):
268
        @model_wrapper
269
270
271
272
273
274
275
276
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

277
        model, mutators = self._get_model_with_mutators(Net())
278
279
280
281
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
282
        input = torch.randn(1, 3, 5, 5)
283
        self.assertEqual(self._get_converted_pytorch_model(model1)(input).size(),
284
                         torch.Size([1, 6, 3, 3]))
285
        self.assertEqual(self._get_converted_pytorch_model(model2)(input).size(),
286
287
288
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
289
        @model_wrapper
290
291
292
293
294
295
296
297
298
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

299
        model, mutators = self._get_model_with_mutators(Net())
300
301
302
303
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
304
305
306
307
308
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

309
    def test_value_choice_in_functional(self):
310
        @model_wrapper
311
312
313
314
315
316
317
318
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

319
        model, mutators = self._get_model_with_mutators(Net())
320
        self.assertEqual(len(mutators), 1)
321
        mutator = mutators[0].bind_sampler(EnumerateSampler())
322
323
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
324
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
325
326
327
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

328
    def test_value_choice_in_layer_choice(self):
329
        @model_wrapper
330
331
332
333
334
335
336
337
338
339
340
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

341
        model, mutators = self._get_model_with_mutators(Net())
342
        self.assertEqual(len(mutators), 3 + self.value_choice_incr)
343
344
345
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
346
            model_new = _apply_all_mutators(model, mutators, sampler)
347
348
349
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

350
    def test_shared(self):
351
        @model_wrapper
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

368
        model, mutators = self._get_model_with_mutators(Net())
369
370
371
372
373
374
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

375
        model, mutators = self._get_model_with_mutators(Net(shared=False))
376
377
378
379
380
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
381
            model_new = model
382
            for mutator in mutators:
383
                model_new = mutator.bind_sampler(sampler).apply(model_new)
384
385
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
386
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
387
388
389
390
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
391

392
    def test_valuechoice_getitem(self):
393
        @model_wrapper
394
395
396
397
398
399
400
401
402
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

403
        model, mutators = self._get_model_with_mutators(Net())
404
405
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
406
        input = torch.randn(1, 3, 5, 5)
407
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
408
                         torch.Size([1, 6, 3, 3]))
409
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
410
411
                         torch.Size([1, 8, 1, 1]))

412
        @model_wrapper
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

427
        model, mutators = self._get_model_with_mutators(Net2())
428
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
429
        input = torch.randn(1, 3, 5, 5)
430
        self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, EnumerateSampler()))(input)
431

432
    def test_valuechoice_getitem_functional(self):
433
        @model_wrapper
434
435
436
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
437
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
438
439
440
441

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

442
        model, mutators = self._get_model_with_mutators(Net())
443
444
445
446
447
448
449
450
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

451
    def test_valuechoice_getitem_functional_expression(self):
452
        @model_wrapper
453
454
455
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
456
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
457
458
459
460
461
462

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

463
        model, mutators = self._get_model_with_mutators(Net())
464
465
466
467
468
469
470
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    def test_valuechoice_multi(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                choice1 = nn.ValueChoice([{"in": 1, "out": 3}, {"in": 2, "out": 6}, {"in": 3, "out": 9}])
                choice2 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                choice3 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                self.conv1 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice2), 1)
                self.conv2 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice3), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler()] + [RandomSampler() for _ in range(self.value_choice_incr + 1)]

        for i in range(10):
            model_new = _apply_all_mutators(model, mutators, samplers)
            result = self._get_converted_pytorch_model(model_new)(torch.randn(1, i % 3 + 1, 3, 3))
            self.assertIn(result.size(), [torch.Size([1, round((i % 3 + 1) * 3 * k), 3, 3]) for k in [2.5, 3.0, 3.5]])

    def test_valuechoice_inconsistent_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([3, 5], label='a'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([3, 6], label='a'), 1)

            def forward(self, x):
                return torch.cat([self.conv1(x), self.conv2(x)], 1)

        with pytest.raises(AssertionError):
            self._get_model_with_mutators(Net())

509
510
511
512
513
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

514
        @model_wrapper
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        model3 = mutator.apply(model)
        self.assertTrue((self._get_converted_pytorch_model(model1)(torch.zeros(1, 16)) == 3).all())
        self.assertTrue((self._get_converted_pytorch_model(model2)(torch.zeros(1, 16)) == 4).all())
        self.assertTrue((self._get_converted_pytorch_model(model3)(torch.zeros(1, 16)) == 5).all())

Yuge Zhang's avatar
Yuge Zhang committed
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    def test_repeat_complex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(nn.LayerChoice([AddOne(), nn.Identity()], label='lc'), (3, 5), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        self.assertEqual(set([mutator.label for mutator in mutators]), {'lc', 'rep'})

        sampler = RandomSampler()
        for _ in range(10):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result = self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item()
            self.assertIn(result, [0., 3., 4., 5.])

        # independent layer choice
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), (2, 3), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 4)

        result = []
        for _ in range(20):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        self.assertIn(1., result)

581
    def test_cell(self):
582
        @model_wrapper
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

601
        @model_wrapper
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)], num_nodes=4)

            def forward(self, x):
                return self.cell([x])

        raw_model, mutators = self._get_model_with_mutators(Net2())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    def test_cell_predecessors(self):
        from typing import List, Tuple

        class Preprocessor(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 16)

            def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
                return [self.linear(x[0]), x[1]]

        class Postprocessor(nn.Module):
            def forward(self, this: torch.Tensor, prev: List[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
                return prev[-1], this

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': nn.Linear(16, 16),
                    'second': nn.Linear(16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2,
                preprocessor=Preprocessor(), postprocessor=Postprocessor(), merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            result = self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16))
            self.assertTrue(result[0].size() == torch.Size([1, 16]))
            self.assertTrue(result[1].size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
657
    def test_nasbench201_cell(self):
658
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench201Cell([
                    lambda x, y: nn.Linear(x, y),
                    lambda x, y: nn.Linear(x, y, bias=False)
                ], 10, 16)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))

678
    def test_autoactivation(self):
679
        @model_wrapper
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.act = nn.AutoActivation()

            def forward(self, x):
                return self.act(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 10]))

696
697

class Python(GraphIR):
698
699
700
    # Python engine doesn't have the extra mutator
    value_choice_incr = 0

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
717
    def test_valuechoice_getitem_functional(self): ...
718
719

    @unittest.skip
720
    def test_valuechoice_getitem_functional_expression(self): ...
Yuge Zhang's avatar
Yuge Zhang committed
721

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    def test_cell_loose_end(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='loose_end')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        any_not_all = False
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            model = self._get_converted_pytorch_model(model)
            indices = model.cell.output_node_indices
            assert all(i > 2 for i in indices)
            self.assertTrue(model(torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 16 * len(indices)]))
            if len(indices) < 4:
                any_not_all = True
        self.assertTrue(any_not_all)

    def test_cell_complex(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16),
                    'second': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16)).size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
770
771
    def test_nasbench101_cell(self):
        # this is only supported in python engine for now.
772
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench101Cell([lambda x: nn.Linear(x, x), lambda x: nn.Linear(x, x, bias=False)],
                                               10, 16, lambda x, y: nn.Linear(x, y), max_num_nodes=5, max_num_edges=7)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())

        succeeded = 0
        sampler = RandomSampler()
        while succeeded <= 10:
            try:
                model = raw_model
                for mutator in mutators:
                    model = mutator.bind_sampler(sampler).apply(model)
                succeeded += 1
            except InvalidMutation:
                continue
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))
795
796
797
798
799


class Shared(unittest.TestCase):
    # This kind of tests are general across execution engines

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
    def test_value_choice_api_purely(self):
        a = nn.ValueChoice([1, 2], label='a')
        b = nn.ValueChoice([3, 4], label='b')
        c = nn.ValueChoice([5, 6], label='c')
        d = a + b + 3 * c
        for i, choice in enumerate(d.inner_choices()):
            if i == 0:
                assert choice.candidates == [1, 2]
            elif i == 1:
                assert choice.candidates == [3, 4]
            elif i == 2:
                assert choice.candidates == [5, 6]
        assert d.evaluate([2, 3, 5]) == 20

        a = nn.ValueChoice(['cat', 'dog'])
        b = nn.ValueChoice(['milk', 'coffee'])
        assert (a + b).evaluate(['dog', 'coffee']) == 'dogcoffee'
        assert (a + 2 * b).evaluate(['cat', 'milk']) == 'catmilkmilk'

        assert (3 - nn.ValueChoice([1, 2])).evaluate([1]) == 2

        with pytest.raises(TypeError):
            a + nn.ValueChoice([1, 3])

        a = nn.ValueChoice([1, 17])
        a = (abs(-a * 3) % 11) ** 5
        assert 'abs' in repr(a)
        with pytest.raises(ValueError):
            a.evaluate([42])
        assert a.evaluate([17]) == 7 ** 5

        a = round(7 / nn.ValueChoice([2, 5]))
        assert a.evaluate([2]) == 4

        a = ~(77 ^ (nn.ValueChoice([1, 4]) & 5))
        assert a.evaluate([4]) == ~(77 ^ (4 & 5))

        a = nn.ValueChoice([5, 3]) * nn.ValueChoice([6.5, 7.5])
        assert math.floor(a.evaluate([5, 7.5])) == int(5 * 7.5)

        a = nn.ValueChoice([1, 3])
        b = nn.ValueChoice([2, 4])
        with pytest.raises(RuntimeError):
            min(a, b)
        with pytest.raises(RuntimeError):
            if a < b:
                ...

        assert nn.ValueChoice.min(a, b).evaluate([3, 2]) == 2
        assert nn.ValueChoice.max(a, b).evaluate([3, 2]) == 3
        assert nn.ValueChoice.max(1, 2, 3) == 3
        assert nn.ValueChoice.max([1, 3, 2]) == 3

        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([3]) == 'b'
        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([2]) == 'a'

        with pytest.raises(RuntimeError):
            assert int(nn.ValueChoice([2.5, 3.5])).evalute([2.5]) == 2

        assert nn.ValueChoice.to_int(nn.ValueChoice([2.5, 3.5])).evaluate([2.5]) == 2
        assert nn.ValueChoice.to_float(nn.ValueChoice(['2.5', '3.5'])).evaluate(['3.5']) == 3.5

    def test_make_divisible(self):
        def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = nn.ValueChoice.max(min_value, nn.ValueChoice.to_int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            return nn.ValueChoice.condition(new_value < min_ratio * value, new_value + divisor, new_value)

        def original_make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            if new_value < min_ratio * value:
                new_value += divisor
            return new_value

        values = [4, 8, 16, 32, 64, 128]
        divisors = [2, 3, 5, 7, 15]
        with pytest.raises(RuntimeError):
            original_make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        result = make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        for value in values:
            for divisor in divisors:
                lst = [value if choice.label == 'value' else divisor for choice in result.inner_choices()]
                assert result.evaluate(lst) == original_make_divisible(value, divisor)

889
890
891
892
893
894
895
896
897
    def test_valuechoice_in_evaluator(self):
        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=2)
        assert process_evaluator_mutations(evaluator, []) == []

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        mutators = process_evaluator_mutations(evaluator, [])
898
        assert len(mutators) == 3
899
900
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
901
902
        samplers = [EnumerateSampler() for _ in range(3)]
        model = _apply_all_mutators(init_model, mutators, samplers)
903
        assert model.evaluator.trace_kwargs['x'] == 1
904
        model = _apply_all_mutators(init_model, mutators, samplers)
905
906
907
908
909
        assert model.evaluator.trace_kwargs['x'] == 2

        # share label
        evaluator = FunctionalEvaluator(foo, t=ValueChoice([1, 2], label='x'), x=ValueChoice([1, 2], label='x'))
        mutators = process_evaluator_mutations(evaluator, [])
910
        assert len(mutators) == 2
911
912
913
914
915

        # getitem
        choice = ValueChoice([{"a": 1, "b": 2}, {"a": 3, "b": 4}])
        evaluator = FunctionalEvaluator(foo, t=1, x=choice['a'], y=choice['b'])
        mutators = process_evaluator_mutations(evaluator, [])
916
        assert len(mutators) == 2
917
918
919
920
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        sampler = RandomSampler()
        for _ in range(10):
921
            model = _apply_all_mutators(init_model, mutators, sampler)
922
            assert (model.evaluator.trace_kwargs['x'], model.evaluator.trace_kwargs['y']) in [(1, 2), (3, 4)]