"vscode:/vscode.git/clone" did not exist on "37c1e3c218ed9987cb6e1a52a2efdeed2e3c304a"
pruning_kd.py 6.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from nni.compression.torch import L1FilterPruner
from knowledge_distill.knowledge_distill import KnowledgeDistill


class vgg(nn.Module):
    def __init__(self, init_weights=True):
        super(vgg, self).__init__()
        cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512]
        self.cfg = cfg
        self.feature = self.make_layers(cfg, True)
        num_classes = 10
        self.classifier = nn.Sequential(
            nn.Linear(cfg[-1], 512),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Linear(512, num_classes)
        )
        if init_weights:
            self._initialize_weights()

    def make_layers(self, cfg, batch_norm=True):
        layers = []
        in_channels = 3
        for v in cfg:
            if v == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False)
                if batch_norm:
                    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
                else:
                    layers += [conv2d, nn.ReLU(inplace=True)]
                in_channels = v
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.feature(x)
        x = nn.AvgPool2d(2)(x)
        x = x.view(x.size(0), -1)
        y = self.classifier(x)
        return y

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(0.5)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


def train(model, device, train_loader, optimizer, kd=None):
    alpha = 1
    beta = 0.8
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        student_loss = F.cross_entropy(output, target)
        if kd is not None:
            kd_loss = kd.loss(data=data, student_out=output)
            loss = alpha * student_loss + beta * kd_loss
        else:
            loss = student_loss
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc


def main():
    torch.manual_seed(0)
    device = torch.device('cuda')
    train_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=True, download=True,
                         transform=transforms.Compose([
                             transforms.Pad(4),
                             transforms.RandomCrop(32),
                             transforms.RandomHorizontalFlip(),
                             transforms.ToTensor(),
                             transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
                         ])),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        ])),
        batch_size=200, shuffle=False)

    model = vgg()
    model.to(device)

    # Train the base VGG-16 model
    print('=' * 10 + 'Train the unpruned base model' + '=' * 10)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 160, 0)
    for epoch in range(160):
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer)
        test(model, device, test_loader)
        lr_scheduler.step(epoch)
    torch.save(model.state_dict(), 'vgg16_cifar10.pth')

    # Test base model accuracy
    print('=' * 10 + 'Test on the original model' + '=' * 10)
    model.load_state_dict(torch.load('vgg16_cifar10.pth'))
    test(model, device, test_loader)
    # top1 = 93.51%

    # Pruning Configuration, all convolution layers are pruned out 80% filters according to the L1 norm
    configure_list = [{
        'sparsity': 0.8,
        'op_types': ['Conv2d'],
    }]

    # Prune model and test accuracy without fine tuning.
    print('=' * 10 + 'Test on the pruned model before fine tune' + '=' * 10)
    pruner = L1FilterPruner(model, configure_list)
    model = pruner.compress()
    test(model, device, test_loader)
    # top1 = 10.00%

    # Fine tune the pruned model for 40 epochs and test accuracy
    print('=' * 10 + 'Fine tuning' + '=' * 10)
    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
    best_top1 = 0
    kd_teacher_model = vgg()
    kd_teacher_model.to(device)
    kd_teacher_model.load_state_dict(torch.load('vgg16_cifar10.pth'))
    kd = KnowledgeDistill(kd_teacher_model, kd_T=5)
    for epoch in range(40):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune, kd)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path='pruned_vgg16_cifar10.pth', mask_path='mask_vgg16_cifar10.pth')

    # Test the exported model
    print('=' * 10 + 'Test on the pruned model after fine tune' + '=' * 10)
    new_model = vgg()
    new_model.to(device)
    new_model.load_state_dict(torch.load('pruned_vgg16_cifar10.pth'))
    test(new_model, device, test_loader)
    # top1 = 85.43% with kd, top1 = 85.04% without kd,


if __name__ == '__main__':
    main()