quantization_customize.rst 5.91 KB
Newer Older
J-shang's avatar
J-shang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/quantization_customize.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_quantization_customize.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_quantization_customize.py:


Customize a new quantization algorithm
======================================

To write a new quantization algorithm, you can write a class that inherits ``nni.compression.pytorch.Quantizer``.
Then, override the member functions with the logic of your algorithm. The member function to override is ``quantize_weight``.
``quantize_weight`` directly returns the quantized weights rather than mask, because for quantization the quantized weights cannot be obtained by applying mask.

.. GENERATED FROM PYTHON SOURCE LINES 9-80

.. code-block:: default


    from nni.compression.pytorch import Quantizer

    class YourQuantizer(Quantizer):
        def __init__(self, model, config_list):
            """
            Suggest you to use the NNI defined spec for config
            """
            super().__init__(model, config_list)

        def quantize_weight(self, weight, config, **kwargs):
            """
            quantize should overload this method to quantize weight tensors.
            This method is effectively hooked to :meth:`forward` of the model.

            Parameters
            ----------
            weight : Tensor
                weight that needs to be quantized
            config : dict
                the configuration for weight quantization
            """

            # Put your code to generate `new_weight` here
            new_weight = ...
            return new_weight

        def quantize_output(self, output, config, **kwargs):
            """
            quantize should overload this method to quantize output.
            This method is effectively hooked to `:meth:`forward` of the model.

            Parameters
            ----------
            output : Tensor
                output that needs to be quantized
            config : dict
                the configuration for output quantization
            """

            # Put your code to generate `new_output` here
            new_output = ...
            return new_output

        def quantize_input(self, *inputs, config, **kwargs):
            """
            quantize should overload this method to quantize input.
            This method is effectively hooked to :meth:`forward` of the model.

            Parameters
            ----------
            inputs : Tensor
                inputs that needs to be quantized
            config : dict
                the configuration for inputs quantization
            """

            # Put your code to generate `new_input` here
            new_input = ...
            return new_input

        def update_epoch(self, epoch_num):
            pass

        def step(self):
            """
            Can do some processing based on the model or weights binded
            in the func bind_model
            """
            pass








.. GENERATED FROM PYTHON SOURCE LINES 81-87

Customize backward function
^^^^^^^^^^^^^^^^^^^^^^^^^^^

Sometimes it's necessary for a quantization operation to have a customized backward function,
such as `Straight-Through Estimator <https://stackoverflow.com/questions/38361314/the-concept-of-straight-through-estimator-ste>`__\ ,
user can customize a backward function as follow:

.. GENERATED FROM PYTHON SOURCE LINES 87-122

.. code-block:: default


    from nni.compression.pytorch.compressor import Quantizer, QuantGrad, QuantType

    class ClipGrad(QuantGrad):
        @staticmethod
        def quant_backward(tensor, grad_output, quant_type):
            """
            This method should be overrided by subclass to provide customized backward function,
            default implementation is Straight-Through Estimator
            Parameters
            ----------
            tensor : Tensor
                input of quantization operation
            grad_output : Tensor
                gradient of the output of quantization operation
            quant_type : QuantType
                the type of quantization, it can be `QuantType.INPUT`, `QuantType.WEIGHT`, `QuantType.OUTPUT`,
                you can define different behavior for different types.
            Returns
            -------
            tensor
                gradient of the input of quantization operation
            """

            # for quant_output function, set grad to zero if the absolute value of tensor is larger than 1
            if quant_type == QuantType.OUTPUT:
                grad_output[tensor.abs() > 1] = 0
            return grad_output

    class _YourQuantizer(Quantizer):
        def __init__(self, model, config_list):
            super().__init__(model, config_list)
            # set your customized backward function to overwrite default backward function
            self.quant_grad = ClipGrad








.. GENERATED FROM PYTHON SOURCE LINES 123-124

If you do not customize ``QuantGrad``, the default backward is Straight-Through Estimator. 


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  1.269 seconds)


.. _sphx_glr_download_tutorials_quantization_customize.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: quantization_customize.py <quantization_customize.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: quantization_customize.ipynb <quantization_customize.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_