mnist.json 1.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
{
    "_model": {
        "inputs": ["image"],
        "outputs": ["metric"],

        "nodes": {
            "stem": {"cell": "stem"},
            "flatten": {"type": "Flatten"},
            "fc1": {"type": "Dense", "units": 1024, "activation": "relu"},
            "fc2": {"type": "Dense", "units": 10},
            "softmax": {"type": "Softmax"}
        },

        "edges": [
            {"head": ["_inputs", 0], "tail": ["stem", 0]},
            {"head": ["stem", 0], "tail": ["flatten", null]},
            {"head": ["flatten", null], "tail": ["fc1", null]},
            {"head": ["fc1", null], "tail": ["fc2", null]},
            {"head": ["fc2", null], "tail": ["softmax", null]},
            {"head": ["softmax", null], "tail": ["_outputs", 0]}
        ]
    },

    "stem": {
        "nodes": {
            "conv1": {"type": "Conv2D", "filters": 32, "kernel_size": 5, "activation": "relu"},
            "pool1": {"type": "MaxPool2D", "pool_size": 2},
            "conv2": {"type": "Conv2D", "filters": 64, "kernel_size": 5, "activation": "relu"},
            "pool2": {"type": "MaxPool2D", "pool_size": 2}
        },

        "edges": [
            {"head": ["_inputs", 0], "tail": ["conv1", null]},
            {"head": ["conv1", null], "tail": ["pool1", null]},
            {"head": ["pool1", null], "tail": ["conv2", null]},
            {"head": ["conv2", null], "tail": ["pool2", null]},
            {"head": ["pool2", null], "tail": ["_outputs", 0]}
        ]
    }
}