fpgm_torch_mnist.py 3.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from nni.compression.torch import FPGMPruner
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms


class Mnist(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = torch.nn.Conv2d(1, 20, 5, 1)
        self.conv2 = torch.nn.Conv2d(20, 50, 5, 1)
        self.fc1 = torch.nn.Linear(4 * 4 * 50, 500)
        self.fc2 = torch.nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

    def _get_conv_weight_sparsity(self, conv_layer):
        num_zero_filters = (conv_layer.weight.data.sum((2,3)) == 0).sum()
        num_filters = conv_layer.weight.data.size(0) * conv_layer.weight.data.size(1)
        return num_zero_filters, num_filters, float(num_zero_filters)/num_filters

    def print_conv_filter_sparsity(self):
        conv1_data = self._get_conv_weight_sparsity(self.conv1)
        conv2_data = self._get_conv_weight_sparsity(self.conv2)
        print('conv1: num zero filters: {}, num filters: {}, sparsity: {:.4f}'.format(conv1_data[0], conv1_data[1], conv1_data[2]))
        print('conv2: num zero filters: {}, num filters: {}, sparsity: {:.4f}'.format(conv2_data[0], conv2_data[1], conv2_data[2]))

def train(model, device, train_loader, optimizer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))
            model.print_conv_filter_sparsity()
        loss.backward()
        optimizer.step()

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, 100 * correct / len(test_loader.dataset)))


def main():
    torch.manual_seed(0)
    device = torch.device('cpu')

    trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=True, download=True, transform=trans),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=False, transform=trans),
        batch_size=1000, shuffle=True)

    model = Mnist()
    model.print_conv_filter_sparsity()

    '''you can change this to LevelPruner to implement it
    pruner = LevelPruner(configure_list)
    '''
    configure_list = [{
        'sparsity': 0.5,
        'op_types': ['Conv2d']
    }]

    pruner = FPGMPruner(model, configure_list)
    pruner.compress()

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
    for epoch in range(10):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer)
        test(model, device, test_loader)


if __name__ == '__main__':
    main()