naive_prune_torch.py 5.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

'''
NNI example for quick start of pruning.
In this example, we use level pruner to prune the LeNet on MNIST.
'''

import logging

import argparse
import torch
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
17

18
19
from nni.algorithms.compression.pytorch.pruning import LevelPruner

20
21
22
import sys
sys.path.append('../models')
from mnist.lenet import LeNet
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

_logger = logging.getLogger('mnist_example')
_logger.setLevel(logging.INFO)

def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break
                

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset), acc))

    return acc

def main(args):
    torch.manual_seed(args.seed)
    use_cuda = not args.no_cuda and torch.cuda.is_available()

    device = torch.device("cuda" if use_cuda else "cpu")

    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_cuda:
        cuda_kwargs = {'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)

    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])

    dataset1 = datasets.MNIST('./data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('./data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

    model = LeNet().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    print('start pre-training')
    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()
        
    torch.save(model.state_dict(), "pretrain_mnist_lenet.pt")

    print('start pruning')
    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.01)

    # create pruner
    prune_config = [{
        'sparsity': args.sparsity,
        'op_types': ['default'],
    }]

112
    pruner = LevelPruner(model, prune_config)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    model = pruner.compress()

    # fine-tuning
    best_top1 = 0
    for epoch in range(1, args.epochs + 1):
        pruner.update_epoch(epoch)
        train(args, model, device, train_loader, optimizer_finetune, epoch)
        top1 = test(model, device, test_loader)

        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path='pruend_mnist_lenet.pt', mask_path='mask_mnist_lenet.pt')

if __name__ == '__main__':
     # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example for model comporession')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--sparsity', type=float, default=0.5,
                        help='target overall target sparsity')
    args = parser.parse_args()

153
    main(args)