basic_pruners_torch.py 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

'''
NNI example for supported basic pruning algorithms.
In this example, we show the end-to-end pruning process: pre-training -> pruning -> fine-tuning.
Note that pruners use masks to simulate the real pruning. In order to obtain a real compressed model, model speed up is required.
You can also try auto_pruners_torch.py to see the usage of some automatic pruning algorithms.

'''
import logging

import argparse
import os
15
import sys
16
17
18
19
import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from torchvision import datasets, transforms

20
21
22
sys.path.append('../models')
from mnist.lenet import LeNet
from cifar10.vgg import VGG
23
24
25
26

from nni.compression.pytorch.utils.counter import count_flops_params

import nni
27
from nni.compression.pytorch import ModelSpeedup
28
29
30
31
from nni.algorithms.compression.pytorch.pruning import (
    LevelPruner,
    SlimPruner,
    FPGMPruner,
32
    TaylorFOWeightFilterPruner,
33
34
35
    L1FilterPruner,
    L2FilterPruner,
    AGPPruner,
J-shang's avatar
J-shang committed
36
    ActivationMeanRankFilterPruner,
37
38
39
40
41
42
43
44
45
46
47
48
49
    ActivationAPoZRankFilterPruner
)

_logger = logging.getLogger('mnist_example')
_logger.setLevel(logging.INFO)

str2pruner = {
    'level': LevelPruner,
    'l1filter': L1FilterPruner,
    'l2filter': L2FilterPruner,
    'slim': SlimPruner,
    'agp': AGPPruner,
    'fpgm': FPGMPruner,
J-shang's avatar
J-shang committed
50
    'mean_activation': ActivationMeanRankFilterPruner,
51
52
    'apoz': ActivationAPoZRankFilterPruner,
    'taylorfo': TaylorFOWeightFilterPruner
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
}

def get_dummy_input(args, device):
    if args.dataset == 'mnist':
        dummy_input = torch.randn([args.test_batch_size, 1, 28, 28]).to(device)
    elif args.dataset in ['cifar10', 'imagenet']:
        dummy_input = torch.randn([args.test_batch_size, 3, 32, 32]).to(device)
    return dummy_input


def get_data(dataset, data_dir, batch_size, test_batch_size):
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {
    }

    if dataset == 'mnist':
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST(data_dir, train=True, download=True,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=batch_size, shuffle=True, **kwargs)
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST(data_dir, train=False,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=test_batch_size, shuffle=True, **kwargs)
        criterion = torch.nn.NLLLoss()
    elif dataset == 'cifar10':
        normalize = transforms.Normalize(
            (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        train_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(data_dir, train=True, transform=transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.RandomCrop(32, 4),
                transforms.ToTensor(),
                normalize,
            ]), download=True),
            batch_size=batch_size, shuffle=True, **kwargs)

        test_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(data_dir, train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])),
            batch_size=batch_size, shuffle=False, **kwargs)
        criterion = torch.nn.CrossEntropyLoss()
    return train_loader, test_loader, criterion

def get_model_optimizer_scheduler(args, device, train_loader, test_loader, criterion):
    if args.model == 'lenet':
        model = LeNet().to(device)
        if args.pretrained_model_dir is None:
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
    elif args.model == 'vgg16':
        model = VGG(depth=16).to(device)
        if args.pretrained_model_dir is None:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
J-shang's avatar
J-shang committed
115
                optimizer, milestones=[int(args.pretrain_epochs * 0.5), int(args.pretrain_epochs * 0.75)], gamma=0.1)
116
117
118
119
120
    elif args.model == 'vgg19':
        model = VGG(depth=19).to(device)
        if args.pretrained_model_dir is None:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
J-shang's avatar
J-shang committed
121
                optimizer, milestones=[int(args.pretrain_epochs * 0.5), int(args.pretrain_epochs * 0.75)], gamma=0.1)
122
123
124
125
126
127
128
    else:
        raise ValueError("model not recognized")

    if args.pretrained_model_dir is None:
        print('start pre-training...')
        best_acc = 0
        for epoch in range(args.pretrain_epochs):
129
            train(args, model, device, train_loader, criterion, optimizer, epoch)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            scheduler.step()
            acc = test(args, model, device, criterion, test_loader)
            if acc > best_acc:
                best_acc = acc
                state_dict = model.state_dict()

        model.load_state_dict(state_dict)
        acc = best_acc

        torch.save(state_dict, os.path.join(args.experiment_data_dir, f'pretrain_{args.dataset}_{args.model}.pth'))
        print('Model trained saved to %s' % args.experiment_data_dir)

    else:
        model.load_state_dict(torch.load(args.pretrained_model_dir))
        best_acc = test(args, model, device, criterion, test_loader)

    # setup new opotimizer for fine-tuning
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
J-shang's avatar
J-shang committed
148
149
    scheduler = MultiStepLR(optimizer, milestones=[int(args.pretrain_epochs * 0.5), int(args.pretrain_epochs * 0.75)], gamma=0.1)

150
151
152
    print('Pretrained model acc:', best_acc)
    return model, optimizer, scheduler

153
def train(args, model, device, train_loader, criterion, optimizer, epoch):
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break

def test(args, model, device, criterion, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Test Loss: {}  Accuracy: {}%\n'.format(
        test_loss, acc))
    return acc


def main(args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    os.makedirs(args.experiment_data_dir, exist_ok=True)

    # prepare model and data
    train_loader, test_loader, criterion = get_data(args.dataset, args.data_dir, args.batch_size, args.test_batch_size)

    model, optimizer, scheduler = get_model_optimizer_scheduler(args, device, train_loader, test_loader, criterion)

    dummy_input = get_dummy_input(args, device)
    flops, params, results = count_flops_params(model, dummy_input)
    print(f"FLOPs: {flops}, params: {params}")

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    print(f'start {args.pruner} pruning...')

    def trainer(model, optimizer, criterion, epoch):
        return train(args, model, device, train_loader, criterion, optimizer, epoch=epoch)

    pruner_cls = str2pruner[args.pruner]

    kw_args = {}
    config_list = [{
        'sparsity': args.sparsity,
        'op_types': ['Conv2d']
    }]

    if args.pruner == 'level':
        config_list = [{
            'sparsity': args.sparsity,
            'op_types': ['default']
        }]

    else:
        if args.dependency_aware:
            dummy_input = get_dummy_input(args, device)
            print('Enable the dependency_aware mode')
            # note that, not all pruners support the dependency_aware mode
            kw_args['dependency_aware'] = True
            kw_args['dummy_input'] = dummy_input
        if args.pruner not in ('l1filter', 'l2filter', 'fpgm'):
            # set only work for training aware pruners
            kw_args['trainer'] = trainer
            kw_args['optimizer'] = optimizer
            kw_args['criterion'] = criterion

        if args.pruner in ('slim', 'mean_activation', 'apoz', 'taylorfo'):
            kw_args['sparsity_training_epochs'] = 5

        if args.pruner == 'agp':
            kw_args['pruning_algorithm'] = 'l1'
            kw_args['num_iterations'] = 5
            kw_args['epochs_per_iteration'] = 1

        # Reproduced result in paper 'PRUNING FILTERS FOR EFFICIENT CONVNETS',
        # Conv_1, Conv_8, Conv_9, Conv_10, Conv_11, Conv_12 are pruned with 50% sparsity, as 'VGG-16-pruned-A'
        if args.pruner == 'slim':
            config_list = [{
                'sparsity': args.sparsity,
                'op_types': ['BatchNorm2d'],
            }]
        else:
            config_list = [{
                'sparsity': args.sparsity,
                'op_types': ['Conv2d'],
                'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
            }]

    pruner = pruner_cls(model, config_list, **kw_args)

    # Pruner.compress() returns the masked model
    model = pruner.compress()
    pruner.get_pruned_weights()

    # export the pruned model masks for model speedup
262
263
264
265
    model_path = os.path.join(args.experiment_data_dir, 'pruned_{}_{}_{}.pth'.format(
        args.model, args.dataset, args.pruner))
    mask_path = os.path.join(args.experiment_data_dir, 'mask_{}_{}_{}.pth'.format(
        args.model, args.dataset, args.pruner))
266
    pruner.export_model(model_path=model_path, mask_path=mask_path)
267
268
269
270

    if args.test_only:
        test(args, model, device, criterion, test_loader)

271
272
273
274
275
276
    # Unwrap all modules to normal state
    pruner._unwrap_model() 
    m_speedup = ModelSpeedup(model, dummy_input, mask_path, device)
    m_speedup.speedup_model()

    print('start finetuning...')
277
    best_top1 = 0
278
    save_path = os.path.join(args.experiment_data_dir, f'finetuned.pth')
279
280
281
282
283
284
285
    for epoch in range(args.fine_tune_epochs):
        print('# Epoch {} #'.format(epoch))
        train(args, model, device, train_loader, criterion, optimizer, epoch)
        scheduler.step()
        top1 = test(args, model, device, criterion, test_loader)
        if top1 > best_top1:
            best_top1 = top1
286
287
288
289
            torch.save(model.state_dict(), save_path)

    flops, params, results = count_flops_params(model, dummy_input)
    print(f'Finetuned model FLOPs {flops/1e6:.2f} M, #Params: {params/1e6:.2f}M, Accuracy: {best_top1: .2f}')
290
291
292
293
294
295
296
297
298
299
300
301
302
303

    if args.nni:
        nni.report_final_result(best_top1)

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='PyTorch Example for model comporession')

    # dataset and model
    parser.add_argument('--dataset', type=str, default='cifar10',
                        help='dataset to use, mnist, cifar10 or imagenet')
    parser.add_argument('--data-dir', type=str, default='./data/',
                        help='dataset directory')
    parser.add_argument('--model', type=str, default='vgg16',
J-shang's avatar
J-shang committed
304
                        choices=['lenet', 'vgg16', 'vgg19', 'resnet18'],
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
                        help='model to use')
    parser.add_argument('--pretrained-model-dir', type=str, default=None,
                        help='path to pretrained model')
    parser.add_argument('--pretrain-epochs', type=int, default=160,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--batch-size', type=int, default=128,
                        help='input batch size for training')
    parser.add_argument('--test-batch-size', type=int, default=200,
                        help='input batch size for testing')
    parser.add_argument('--experiment-data-dir', type=str, default='./experiment_data',
                        help='For saving output checkpoints')
    parser.add_argument('--log-interval', type=int, default=100, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--multi-gpu', action='store_true', default=False,
                        help='run on mulitple gpus')
    parser.add_argument('--test-only', action='store_true', default=False,
                        help='run test only')

    # pruner
    parser.add_argument('--sparsity', type=float, default=0.5,
                        help='target overall target sparsity')
    parser.add_argument('--dependency-aware', action='store_true', default=False,
                        help='toggle dependency aware mode')
    parser.add_argument('--pruner', type=str, default='l1filter',
                        choices=['level', 'l1filter', 'l2filter', 'slim', 'agp',
332
                                 'fpgm', 'mean_activation', 'apoz', 'taylorfo'],
333
334
335
336
337
                        help='pruner to use')

    # fine-tuning
    parser.add_argument('--fine-tune-epochs', type=int, default=160,
                        help='epochs to fine tune')
J-shang's avatar
J-shang committed
338
339

    parser.add_argument('--nni', action='store_true', default=False,
340
341
342
343
344
                        help="whether to tune the pruners using NNi tuners")

    args = parser.parse_args()

    if args.nni:
J-shang's avatar
J-shang committed
345
346
347
348
        params = nni.get_next_parameter()
        print(params)
        args.sparsity = params['sparsity']
        args.pruner = params['pruner']
349
        args.model = params['model']
350
351

    main(args)