test_model_speedup.py 10.8 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import numpy as np
import torch
7
import torchvision.models as models
chicm-ms's avatar
chicm-ms committed
8
9
10
11
12
13
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.vgg import vgg16
from torchvision.models.resnet import resnet18
from unittest import TestCase, main

14
from nni.compression.torch import L1FilterPruner, apply_compression_results, ModelSpeedup
15
16
from nni.compression.torch.pruning.weight_masker import WeightMasker
from nni.compression.torch.pruning.one_shot import _StructuredFilterPruner
chicm-ms's avatar
chicm-ms committed
17

chicm-ms's avatar
chicm-ms committed
18
torch.manual_seed(0)
19
20
21
22
23
24
25
26
27
28
29
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
BATCH_SIZE = 2
# the relative distance
RELATIVE_THRESHOLD = 0.01
# Because of the precision of floating-point numbers, some errors
# between the original output tensors(without speedup) and the output
# tensors of the speedup model are normal. When the output tensor itself
# is small, such errors may exceed the relative threshold, so we also add
# an absolute threshold to determine whether the final result is correct.
# The error should meet the RELATIVE_THREHOLD or the ABSOLUTE_THRESHOLD.
ABSOLUTE_THRESHOLD = 0.0001
chicm-ms's avatar
chicm-ms committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class BackboneModel1(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 1, 1, 1)
    def forward(self, x):
        return self.conv1(x)

class BackboneModel2(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.bn1 = nn.BatchNorm2d(self.conv1.out_channels)
        self.bn2 = nn.BatchNorm2d(self.conv2.out_channels)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(x.size(0), -1)
        
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

class BigModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.backbone1 = BackboneModel1()
        self.backbone2 = BackboneModel2()
        self.fc3 =  nn.Sequential(
            nn.Linear(10, 10),
            nn.BatchNorm1d(10),
            nn.ReLU(inplace=True),
            nn.Linear(10, 2)
        )
    def forward(self, x):
        x = self.backbone1(x)
        x = self.backbone2(x)
        x = self.fc3(x)
        return x

chicm-ms's avatar
chicm-ms committed
75
dummy_input = torch.randn(2, 1, 28, 28)
chicm-ms's avatar
chicm-ms committed
76
SPARSITY = 0.5
chicm-ms's avatar
chicm-ms committed
77
78
MODEL_FILE, MASK_FILE = './11_model.pth', './l1_mask.pth'

chicm-ms's avatar
chicm-ms committed
79
80
81
82
83
84
85
def prune_model_l1(model):
    config_list = [{
        'sparsity': SPARSITY,
        'op_types': ['Conv2d']
    }]
    pruner = L1FilterPruner(model, config_list)
    pruner.compress()
chicm-ms's avatar
chicm-ms committed
86
    pruner.export_model(model_path=MODEL_FILE, mask_path=MASK_FILE)
chicm-ms's avatar
chicm-ms committed
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def generate_random_sparsity(model):
    cfg_list = []
    for name, module in model.named_modules():
        if isinstance(module, nn.Conv2d):
            sparsity = np.random.uniform(0.5, 0.99)
            cfg_list.append({'op_types': ['Conv2d'], 'op_names': [name],
                             'sparsity': sparsity})
    return cfg_list

def zero_bn_bias(model):
    with torch.no_grad():
        for name, module in model.named_modules():
            if isinstance(module, nn.BatchNorm2d) \
            or isinstance(module, nn.BatchNorm3d) \
            or isinstance(module, nn.BatchNorm1d):
                shape = module.bias.data.size()
                device = module.bias.device
                module.bias.data = torch.zeros(shape).to(device)
                shape = module.running_mean.data.size()
                module.running_mean = torch.zeros(shape).to(device)

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class L1ChannelMasker(WeightMasker):
    def __init__(self, model, pruner):
        self.model = model
        self.pruner = pruner

    def calc_mask(self, sparsity, wrapper, wrapper_idx=None):
        msg = 'module type {} is not supported!'.format(wrapper.type)
        #assert wrapper.type == 'Conv2d', msg
        weight = wrapper.module.weight.data
        bias = None
        if hasattr(wrapper.module, 'bias') and wrapper.module.bias is not None:
            bias = wrapper.module.bias.data

        if wrapper.weight_mask is None:
            mask_weight = torch.ones(weight.size()).type_as(weight).detach()
        else:
            mask_weight = wrapper.weight_mask.clone()
        if bias is not None:
            if wrapper.bias_mask is None:
                mask_bias = torch.ones(bias.size()).type_as(bias).detach()
            else:
                mask_bias = wrapper.bias_mask.clone()
        else:
            mask_bias = None
        base_mask = {'weight_mask': mask_weight, 'bias_mask': mask_bias}

        num_total = weight.size(1)
        num_prune = int(num_total * sparsity)

        if num_total < 2 or num_prune < 1:
            return base_mask
        w_abs = weight.abs()
        if wrapper.type == 'Conv2d':
            w_abs_structured = w_abs.sum((0, 2, 3))
            threshold = torch.topk(w_abs_structured, num_prune, largest=False)[0].max()
            mask_weight = torch.gt(w_abs_structured, threshold)[None, :, None, None].expand_as(weight).type_as(weight)
            return {'weight_mask': mask_weight.detach()}
        else:
            # Linear
            assert wrapper.type == 'Linear'
            w_abs_structured = w_abs.sum((0))
            threshold = torch.topk(w_abs_structured, num_prune, largest=False)[0].max()
            mask_weight = torch.gt(w_abs_structured, threshold)[None, :].expand_as(weight).type_as(weight)
            return {'weight_mask': mask_weight.detach(), 'bias_mask': mask_bias}

class L1ChannelPruner(_StructuredFilterPruner):
    def __init__(self, model, config_list, optimizer=None, dependency_aware=False, dummy_input=None):
        super().__init__(model, config_list, pruning_algorithm='l1', optimizer=optimizer,
                         dependency_aware=dependency_aware, dummy_input=dummy_input)
    def validate_config(self, model, config_list):
        pass


def channel_prune(model):
    config_list = [{
        'sparsity': SPARSITY,
        'op_types': ['Conv2d', 'Linear']
    }, {
        'op_names': ['conv1'],
        'exclude': True
    }]

    pruner = L1ChannelPruner(model, config_list)
    masker = L1ChannelMasker(model, pruner)
    pruner.masker = masker
    pruner.compress()
    pruner.export_model(model_path=MODEL_FILE, mask_path=MASK_FILE)

chicm-ms's avatar
chicm-ms committed
177
178
179
180
181
class SpeedupTestCase(TestCase):
    def test_speedup_vgg16(self):
        prune_model_l1(vgg16())
        model = vgg16()
        model.train()
chicm-ms's avatar
chicm-ms committed
182
        ms = ModelSpeedup(model, torch.randn(2, 3, 32, 32), MASK_FILE)
chicm-ms's avatar
chicm-ms committed
183
184
185
186
187
188
189
190
191
192
        ms.speedup_model()

        orig_model = vgg16()
        assert model.training
        assert model.features[2].out_channels == int(orig_model.features[2].out_channels * SPARSITY)
        assert model.classifier[0].in_features == int(orig_model.classifier[0].in_features * SPARSITY)

    def test_speedup_bigmodel(self):
        prune_model_l1(BigModel())
        model = BigModel()
chicm-ms's avatar
chicm-ms committed
193
194
195
196
        apply_compression_results(model, MASK_FILE, 'cpu')
        model.eval()
        mask_out = model(dummy_input)

chicm-ms's avatar
chicm-ms committed
197
        model.train()
chicm-ms's avatar
chicm-ms committed
198
        ms = ModelSpeedup(model, dummy_input, MASK_FILE)
chicm-ms's avatar
chicm-ms committed
199
        ms.speedup_model()
chicm-ms's avatar
chicm-ms committed
200
201
202
203
204
205
206
207
208
        assert model.training

        model.eval()
        speedup_out = model(dummy_input)
        if not torch.allclose(mask_out, speedup_out, atol=1e-07):
            print('input:', dummy_input.size(), torch.abs(dummy_input).sum((2,3)))
            print('mask_out:', mask_out)
            print('speedup_out:', speedup_out)
            raise RuntimeError('model speedup inference result is incorrect!')
chicm-ms's avatar
chicm-ms committed
209
210

        orig_model = BigModel()
chicm-ms's avatar
chicm-ms committed
211

chicm-ms's avatar
chicm-ms committed
212
213
214
215
216
        assert model.backbone2.conv1.out_channels == int(orig_model.backbone2.conv1.out_channels * SPARSITY)
        assert model.backbone2.conv2.in_channels == int(orig_model.backbone2.conv2.in_channels * SPARSITY)
        assert model.backbone2.conv2.out_channels == int(orig_model.backbone2.conv2.out_channels * SPARSITY)
        assert model.backbone2.fc1.in_features == int(orig_model.backbone2.fc1.in_features * SPARSITY)

217
    def test_speedup_integration(self):
218
219
220
221
222
223
224
225
226
227
228
        for model_name in ['resnet18', 'squeezenet1_1', 'mobilenet_v2', 'densenet121', 'densenet169', 'inception_v3', 'resnet50']:
            kwargs = {
                'pretrained': True
            }
            if model_name == 'resnet50':
                # testing multiple groups
                kwargs = {
                    'pretrained': False,
                    'groups': 4
                }

229
            Model = getattr(models, model_name)
230
231
            net = Model(**kwargs).to(device)
            speedup_model = Model(**kwargs).to(device)
232
            net.eval() # this line is necessary
Ningxin Zheng's avatar
Ningxin Zheng committed
233
            speedup_model.eval()
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            # random generate the prune config for the pruner
            cfgs = generate_random_sparsity(net)
            pruner = L1FilterPruner(net, cfgs)
            pruner.compress()
            pruner.export_model(MODEL_FILE, MASK_FILE)
            pruner._unwrap_model()
            state_dict = torch.load(MODEL_FILE)
            speedup_model.load_state_dict(state_dict)
            zero_bn_bias(net)
            zero_bn_bias(speedup_model)

            data = torch.ones(BATCH_SIZE, 3, 224, 224).to(device)
            ms = ModelSpeedup(speedup_model, data, MASK_FILE)
            ms.speedup_model()
248
249
250

            speedup_model.eval()

251
252
253
254
255
256
257
258
259
            ori_out = net(data)
            speeded_out = speedup_model(data)
            ori_sum = torch.sum(ori_out).item()
            speeded_sum = torch.sum(speeded_out).item()
            print('Sum of the output of %s (before speedup):'%model_name, ori_sum)
            print('Sum of the output of %s (after speedup):'%model_name, speeded_sum)
            assert (abs(ori_sum - speeded_sum) / abs(ori_sum) < RELATIVE_THRESHOLD) or \
                   (abs(ori_sum - speeded_sum) < ABSOLUTE_THRESHOLD)

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_channel_prune(self):
        orig_net = resnet18(num_classes=10).to(device)
        channel_prune(orig_net)
        state_dict = torch.load(MODEL_FILE)

        orig_net = resnet18(num_classes=10).to(device)
        orig_net.load_state_dict(state_dict)
        apply_compression_results(orig_net, MASK_FILE)
        orig_net.eval()

        net = resnet18(num_classes=10).to(device)

        net.load_state_dict(state_dict)
        net.eval()

        data = torch.randn(BATCH_SIZE, 3, 224, 224).to(device)
        ms = ModelSpeedup(net, data, MASK_FILE)
        ms.speedup_model()
        ms.bound_model(data)

        net.eval()

        ori_sum = orig_net(data).abs().sum().item()
        speeded_sum = net(data).abs().sum().item()

        print(ori_sum, speeded_sum)
        assert (abs(ori_sum - speeded_sum) / abs(ori_sum) < RELATIVE_THRESHOLD) or \
            (abs(ori_sum - speeded_sum) < ABSOLUTE_THRESHOLD)

chicm-ms's avatar
chicm-ms committed
289
    def tearDown(self):
chicm-ms's avatar
chicm-ms committed
290
291
        os.remove(MODEL_FILE)
        os.remove(MASK_FILE)
chicm-ms's avatar
chicm-ms committed
292
293
294

if __name__ == '__main__':
    main()