base_mnasnet.py 12.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import warnings

import torch
import torch.nn as torch_nn
from torchvision.models.utils import load_state_dict_from_url
import torch.nn.functional as F

import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parents[2]))
from nni.retiarii import nn

# Paper suggests 0.9997 momentum, for TensorFlow. Equivalent PyTorch momentum is
# 1.0 - tensorflow.
_BN_MOMENTUM = 1 - 0.9997
_FIRST_DEPTH = 32
_MOBILENET_V2_FILTERS = [16, 24, 32, 64, 96, 160, 320]
_MOBILENET_V2_NUM_LAYERS = [1, 2, 3, 4, 3, 3, 1]


class _ResidualBlock(nn.Module):
    def __init__(self, net):
        super().__init__()
        self.net = net

    def forward(self, x):
        return self.net(x) + x

class _InvertedResidual(nn.Module):

    def __init__(self, in_ch, out_ch, kernel_size, stride, expansion_factor, skip, bn_momentum=0.1):
        super(_InvertedResidual, self).__init__()
        assert stride in [1, 2]
        assert kernel_size in [3, 5]
        mid_ch = in_ch * expansion_factor
        self.apply_residual = skip and in_ch == out_ch and stride == 1
        self.layers = nn.Sequential(
            # Pointwise
            nn.Conv2d(in_ch, mid_ch, 1, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=bn_momentum),
            nn.ReLU(inplace=True),
            # Depthwise
            nn.Conv2d(mid_ch, mid_ch, kernel_size, padding=kernel_size // 2,
                      stride=stride, groups=mid_ch, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=bn_momentum),
            nn.ReLU(inplace=True),
            # Linear pointwise. Note that there's no activation.
            nn.Conv2d(mid_ch, out_ch, 1, bias=False),
            nn.BatchNorm2d(out_ch, momentum=bn_momentum))

    def forward(self, input):
        if self.apply_residual:
            ret = self.layers(input) + input
        else:
            ret = self.layers(input)
        return ret


def _stack_inverted_residual(in_ch, out_ch, kernel_size, skip, stride, exp_factor, repeats, bn_momentum):
    """ Creates a stack of inverted residuals. """
    assert repeats >= 1
    # First one has no skip, because feature map size changes.
    first = _InvertedResidual(in_ch, out_ch, kernel_size, stride, exp_factor, skip, bn_momentum=bn_momentum)
    remaining = []
    for _ in range(1, repeats):
        remaining.append(_InvertedResidual(out_ch, out_ch, kernel_size, 1, exp_factor, skip, bn_momentum=bn_momentum))
    return nn.Sequential(first, *remaining)


def _stack_normal_conv(in_ch, out_ch, kernel_size, skip, dconv, stride, repeats, bn_momentum):
    assert repeats >= 1
    stack = []
    for i in range(repeats):
        s = stride if i == 0 else 1
        if dconv:
            modules = [
                nn.Conv2d(in_ch, in_ch, kernel_size, padding=kernel_size // 2, stride=s, groups=in_ch, bias=False),
                nn.BatchNorm2d(in_ch, momentum=bn_momentum),
                nn.ReLU(inplace=True),
                nn.Conv2d(in_ch, out_ch, 1, padding=0, stride=1, bias=False),
                nn.BatchNorm2d(out_ch, momentum=bn_momentum)
            ]
        else:
            modules = [
                nn.Conv2d(in_ch, out_ch, kernel_size, padding=kernel_size // 2, stride=s, bias=False),
                nn.ReLU(inplace=True),
                nn.BatchNorm2d(out_ch, momentum=bn_momentum)
            ]
        if skip and in_ch == out_ch and s == 1:
            # use different implementation for skip and noskip to align with pytorch
            stack.append(_ResidualBlock(nn.Sequential(*modules)))
        else:
            stack += modules
        in_ch = out_ch
    return stack


def _round_to_multiple_of(val, divisor, round_up_bias=0.9):
    """ Asymmetric rounding to make `val` divisible by `divisor`. With default
    bias, will round up, unless the number is no more than 10% greater than the
    smaller divisible value, i.e. (83, 8) -> 80, but (84, 8) -> 88. """
    assert 0.0 < round_up_bias < 1.0
    new_val = max(divisor, int(val + divisor / 2) // divisor * divisor)
    return new_val if new_val >= round_up_bias * val else new_val + divisor


def _get_depths(depths, alpha):
    """ Scales tensor depths as in reference MobileNet code, prefers rouding up
    rather than down. """
    return [_round_to_multiple_of(depth * alpha, 8) for depth in depths]


class MNASNet(nn.Module):
    """ MNASNet, as described in https://arxiv.org/pdf/1807.11626.pdf. This
    implements the B1 variant of the model.
    >>> model = MNASNet(1000, 1.0)
    >>> x = torch.rand(1, 3, 224, 224)
    >>> y = model(x)
    >>> y.dim()
    1
    >>> y.nelement()
    1000
    """
    # Version 2 adds depth scaling in the initial stages of the network.
    _version = 2

    def __init__(self, alpha, depths, convops, kernel_sizes, num_layers,
                 skips, num_classes=1000, dropout=0.2):
        super(MNASNet, self).__init__()
        assert alpha > 0.0
        assert len(depths) == len(convops) == len(kernel_sizes) == len(num_layers) == len(skips) == 7
        self.alpha = alpha
        self.num_classes = num_classes
        depths = _get_depths([_FIRST_DEPTH] + depths, alpha)
        base_filter_sizes = [16, 24, 40, 80, 96, 192, 320]
        exp_ratios = [3, 3, 3, 6, 6, 6, 6]
        strides = [1, 2, 2, 2, 1, 2, 1]
        layers = [
            # First layer: regular conv.
            nn.Conv2d(3, depths[0], 3, padding=1, stride=2, bias=False),
            nn.BatchNorm2d(depths[0], momentum=_BN_MOMENTUM),
            nn.ReLU(inplace=True),
        ]
        count = 0
        #for conv, prev_depth, depth, ks, skip, stride, repeat, exp_ratio in \
        #        zip(convops, depths[:-1], depths[1:], kernel_sizes, skips, strides, num_layers, exp_ratios):
        for filter_size, exp_ratio, stride in zip(base_filter_sizes, exp_ratios, strides):
            # TODO: restrict that "choose" can only be used within mutator
            ph = nn.Placeholder(label=f'mutable_{count}', related_info={
                           'kernel_size_options': [1, 3, 5],
                           'n_layer_options': [1, 2, 3, 4],
                           'op_type_options': ['__mutated__.base_mnasnet.RegularConv',
                                               '__mutated__.base_mnasnet.DepthwiseConv',
                                               '__mutated__.base_mnasnet.MobileConv'],
                           #'se_ratio_options': [0, 0.25],
                           'skip_options': ['identity', 'no'],
                           'n_filter_options': [int(filter_size*x) for x in [0.75, 1.0, 1.25]],
                           'exp_ratio': exp_ratio,
                           'stride': stride,
                           'in_ch': depths[0] if count == 0 else None
            })
            layers.append(ph)
            '''if conv == "mconv":
                # MNASNet blocks: stacks of inverted residuals.
                layers.append(_stack_inverted_residual(prev_depth, depth, ks, skip,
                                                       stride, exp_ratio, repeat, _BN_MOMENTUM))
            else:
                # Normal conv and depth-separated conv
                layers += _stack_normal_conv(prev_depth, depth, ks, skip, conv == "dconv",
                                             stride, repeat, _BN_MOMENTUM)'''
            count += 1
            if count >= 2:
                break
        layers += [
            # Final mapping to classifier input.
            nn.Conv2d(depths[7], 1280, 1, padding=0, stride=1, bias=False),
            nn.BatchNorm2d(1280, momentum=_BN_MOMENTUM),
            nn.ReLU(inplace=True),
        ]
        self.layers = nn.Sequential(*layers)
        self.classifier = nn.Sequential(nn.Dropout(p=dropout, inplace=True),
                                        nn.Linear(1280, num_classes))
        self._initialize_weights()
        #self.for_test = 10

    def forward(self, x):
        #if self.for_test == 10:
        x = self.layers(x)
        # Equivalent to global avgpool and removing H and W dimensions.
        x = x.mean([2, 3])
        x = F.relu(x)
        return self.classifier(x)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                torch_nn.init.kaiming_normal_(m.weight, mode="fan_out",
                                        nonlinearity="relu")
                if m.bias is not None:
                    torch_nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                torch_nn.init.ones_(m.weight)
                torch_nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                torch_nn.init.kaiming_uniform_(m.weight, mode="fan_out",
                                         nonlinearity="sigmoid")
                torch_nn.init.zeros_(m.bias)


def test_model(model):
    model(torch.randn(2, 3, 224, 224))

#====================definition of candidate op classes
BN_MOMENTUM = 1 - 0.9997

class RegularConv(nn.Module):
    def __init__(self, kernel_size, in_ch, out_ch, skip, exp_ratio, stride):
        super().__init__()
        self.kernel_size = kernel_size
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.skip = skip
        self.exp_ratio = exp_ratio
        self.stride = stride

        self.conv = nn.Conv2d(in_ch, out_ch, kernel_size, padding=kernel_size // 2, stride=stride, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.bn = nn.BatchNorm2d(out_ch, momentum=BN_MOMENTUM)

    def forward(self, x):
        out = self.bn(self.relu(self.conv(x)))
        if self.skip == 'identity':
            out = out + x
        return out

class DepthwiseConv(nn.Module):
    def __init__(self, kernel_size, in_ch, out_ch, skip, exp_ratio, stride):
        super().__init__()
        self.kernel_size = kernel_size
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.skip = skip
        self.exp_ratio = exp_ratio
        self.stride = stride

        self.conv1 = nn.Conv2d(in_ch, in_ch, kernel_size, padding=kernel_size // 2, stride=stride, groups=in_ch, bias=False)
        self.bn1 = nn.BatchNorm2d(in_ch, momentum=BN_MOMENTUM)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(in_ch, out_ch, 1, padding=0, stride=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_ch, momentum=BN_MOMENTUM)

    def forward(self, x):
        out = self.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        if self.skip == 'identity':
            out = out + x
        return out

class MobileConv(nn.Module):
    def __init__(self, kernel_size, in_ch, out_ch, skip, exp_ratio, stride):
        super().__init__()
        self.kernel_size = kernel_size
        self.in_ch = in_ch
        self.out_ch = out_ch
        self.skip = skip
        self.exp_ratio = exp_ratio
        self.stride = stride

        mid_ch = in_ch * exp_ratio
        self.layers = nn.Sequential(
            # Pointwise
            nn.Conv2d(in_ch, mid_ch, 1, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=BN_MOMENTUM),
            nn.ReLU(inplace=True),
            # Depthwise
            nn.Conv2d(mid_ch, mid_ch, kernel_size, padding= (kernel_size - 1) // 2,
                      stride=stride, groups=mid_ch, bias=False),
            nn.BatchNorm2d(mid_ch, momentum=BN_MOMENTUM),
            nn.ReLU(inplace=True),
            # Linear pointwise. Note that there's no activation.
            nn.Conv2d(mid_ch, out_ch, 1, bias=False),
            nn.BatchNorm2d(out_ch, momentum=BN_MOMENTUM))

    def forward(self, x):
        out = self.layers(x)
        if self.skip == 'identity':
            out = out + x
        return out

#====================Training approach
'''
import sdk
from sdk.mutators.builtin_mutators import ModuleMutator
import datasets

class ModelTrain(sdk.Trainer):
    def __init__(self, device='cuda'):
        super(ModelTrain, self).__init__()
        self.device = torch.device(device)
        self.data_provider = datasets.ImagenetDataProvider(save_path="/data/v-yugzh/imagenet",
                                                    train_batch_size=32,
                                                    test_batch_size=32,
                                                    valid_size=None,
                                                    n_worker=4,
                                                    resize_scale=0.08,
                                                    distort_color='normal')

    def train_dataloader(self):
        return self.data_provider.train

    def val_dataloader(self):
        return self.data_provider.valid
'''
#====================Experiment config

# mnasnet0_5
ir_module = _InvertedResidual(16, 16, 3, 1, 1, True)