index.html 22.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
{% extends "!layout.html" %}

{% set title = "Welcome To Neural Network Intelligence !!!"%}

{% block document %}

<div>
  <div class="chinese"><a href="https://nni.readthedocs.io/zh/latest/">简体中文</a></div>
  <b>NNI (Neural Network Intelligence)</b> is a lightweight but powerful toolkit to
  help users <b>automate</b>
  <a href="{{ pathto('FeatureEngineering/Overview') }}">Feature Engineering</a>,
  <a href="{{ pathto('NAS/Overview') }}">Neural Architecture Search</a>,
  <a href="{{ pathto('Tuner/BuiltinTuner') }}">Hyperparameter Tuning</a> and
  <a href="{{ pathto('Compressor/Overview') }}">Model Compression</a>.
</div>
<p class="topMargin">
  The tool manages automated machine learning (AutoML) experiments,
  <b>dispatches and runs</b>
  experiments' trial jobs generated by tuning algorithms to search the best neural
  architecture and/or hyper-parameters in
  <b>different training environments</b> like
  <a href="{{ pathto('TrainingService/LocalMode') }}">Local Machine</a>,
  <a href="{{ pathto('TrainingService/RemoteMachineMode') }}">Remote Servers</a>,
  <a href="{{ pathto('TrainingService/PaiMode') }}">OpenPAI</a>,
  <a href="{{ pathto('TrainingService/KubeflowMode') }}">Kubeflow</a>,
  <a href="{{ pathto('TrainingService/FrameworkControllerMode') }}">FrameworkController on K8S (AKS etc.)</a>
  <a href="{{ pathto('TrainingService/DLTSMode') }}">DLWorkspace (aka. DLTS)</a>
  and other cloud options.
</p>
<!-- Who should consider using NNI -->
<div>
  <h1 class="title">Who should consider using NNI</h1>
  <ul>
    <li>Those who want to <b>try different AutoML algorithms</b> in their training code/model.</li>
    <li>Those who want to run AutoML trial jobs <b>in different environments</b> to speed up search.</li>
    <li>Researchers and data scientists who want to easily <b>implement and experiement new AutoML
        algorithms</b>
      , may it be: hyperparameter tuning algorithm,
      neural architect search algorithm or model compression algorithm.
    </li>
    <li>ML Platform owners who want to <b>support AutoML in their platform</b></li>
  </ul>
</div>
<!-- nni release to version -->
<div class="inline">
  <h3><a href="https://github.com/microsoft/nni/releases">NNI {{ release }} has been released!</a></h3>
  <img width="48" src="_static/img/release_icon.png">
</div>
<!-- NNI capabilities in a glance -->
<div>
  <h1 class="title">NNI capabilities in a glance</h1>
  <p>
    NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiements.
    With the extensible API, you can customize your own AutoML algorithms and training services.
    To make it easy for new users, NNI also provides a set of build-in stat-of-the-art
    AutoML algorithms and out of box support for popular training platforms.
  </p>
  <p>
    Within the following table, we summarized the current NNI capabilities,
    we are gradually adding new capabilities and we'd love to have your contribution.
  </p>
</div>

<p align="center">
  <a href="#overview"><img src="_static/img/overview.svg" /></a>
</p>

<table class="list">
  <tbody>
    <tr align="center" valign="bottom" class="column">
      <td></td>
      <td class="framework">
        <b>Frameworks & Libraries</b>
      </td>
      <td>
        <b>Algorithms</b>
      </td>
      <td>
        <b>Training Services</b>
      </td>
    </tr>
    </tr>
    <tr>
      <td class="verticalMiddle"><b>Built-in</b></td>
      <td>
        <ul class="firstUl">
          <li><b>Supported Frameworks</b></li>
          <ul class="circle">
            <li>PyTorch</li>
            <li>Keras</li>
            <li>TensorFlow</li>
            <li>MXNet</li>
            <li>Caffe2</li>
            <a href="{{ pathto('SupportedFramework_Library') }}">More...</a><br />
          </ul>
        </ul>
        <ul class="firstUl">
          <li><b>Supported Libraries</b></li>
          <ul class="circle">
            <li>Scikit-learn</li>
            <li>XGBoost</li>
            <li>LightGBM</li>
            <a href="{{ pathto('SupportedFramework_Library') }}">More...</a><br />
          </ul>
        </ul>
        <ul class="firstUl">
          <li><b>Examples</b></li>
          <ul class="circle">
            <li><a href="https://github.com/microsoft/nni/tree/master/examples/trials/mnist-pytorch">MNIST-pytorch</li>
            </a>
            <li><a href="https://github.com/microsoft/nni/tree/master/examples/trials/mnist-tfv1">MNIST-tensorflow</li>
            </a>
            <li><a href="https://github.com/microsoft/nni/tree/master/examples/trials/mnist-keras">MNIST-keras</li></a>
            <li><a href="{{ pathto('TrialExample/GbdtExample') }}">Auto-gbdt</a></li>
            <li><a href="{{ pathto('TrialExample/Cifar10Examples') }}">Cifar10-pytorch</li></a>
            <li><a href="{{ pathto('TrialExample/SklearnExamples') }}">Scikit-learn</a></li>
            <li><a href="{{ pathto('TrialExample/EfficientNet') }}">EfficientNet</a></li>
            <a href="{{ pathto('SupportedFramework_Library') }}">More...</a><br />
          </ul>
        </ul>
      </td>
      <td align="left">
        <a href="{{ pathto('Tuner/BuiltinTuner') }}">Hyperparameter Tuning</a>
        <ul class="firstUl">
          <div><b>Exhaustive search</b></div>
          <ul class="circle">
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Random Search</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Grid Search</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Batch</a></li>
          </ul>
          <div><b>Heuristic search</b></div>
          <ul class="circle">
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Naïve Evolution</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Anneal</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Hyperband</a></li>
          </ul>
          <div><b>Bayesian optimization</b></div>
          <ul class="circle">
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">BOHB</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">TPE</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">SMAC</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">Metis Tuner</a></li>
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">GP Tuner</a> </li>
          </ul>
          <div><b>RL Based</b></div>
          <ul class="circle">
            <li><a href="{{ pathto('Tuner/BuiltinTuner') }}">PPO Tuner</a> </li>
          </ul>
        </ul>
        <a href="{{ pathto('NAS/Overview') }}">Neural Architecture Search</a>
        <ul class="firstUl">
          <ul class="circle">
            <li><a href="{{ pathto('NAS/ENAS') }}">ENAS</a></li>
            <li><a href="{{ pathto('NAS/DARTS') }}">DARTS</a></li>
            <li><a href="{{ pathto('NAS/PDARTS') }}">P-DARTS</a></li>
            <li><a href="{{ pathto('NAS/CDARTS') }}">CDARTS</a></li>
            <li><a href="{{ pathto('NAS/SPOS') }}">SPOS</a></li>
            <li><a href="{{ pathto('NAS/Proxylessnas') }}">ProxylessNAS</a></li>
            <li><a href="{{ pathto('Tuner/NetworkmorphismTuner') }}">Network Morphism</a> </li>
            <li><a href="{{ pathto('NAS/TextNAS') }}">TextNAS</a> </li>
          </ul>
        </ul>
        <a href="{{ pathto('Compressor/Overview') }}">Model Compression</a>
        <ul class="firstUl">
          <div><b>Pruning</b></div>
          <ul class="circle">
            <li><a href="{{ pathto('Compressor/Pruner') }}">AGP Pruner</a></li>
            <li><a href="{{ pathto('Compressor/Pruner') }}">Slim Pruner</a></li>
            <li><a href="{{ pathto('Compressor/Pruner') }}">FPGM Pruner</a></li>
          </ul>
          <div><b>Quantization</b></div>
          <ul class="circle">
            <li><a href="{{ pathto('Compressor/Quantizer') }}">QAT Quantizer</a></li>
            <li><a href="{{ pathto('Compressor/Quantizer') }}">DoReFa Quantizer</a></li>
          </ul>
        </ul>
        <a href="{{ pathto('FeatureEngineering/Overview') }}">Feature Engineering (Beta)</a>
        <ul class="circle">
          <li><a href="{{ pathto('FeatureEngineering/GradientFeatureSelector') }}">GradientFeatureSelector</a></li>
          <li><a href="{{ pathto('FeatureEngineering/GBDTSelector') }}">GBDTSelector</a></li>
        </ul>
        <a href="{{ pathto('Assessor/BuiltinAssessor') }}">Early Stop Algorithms</a>
        <ul class="circle">
          <li><a href="{{ pathto('Assessor/BuiltinAssessor') }}">Median Stop</a></li>
          <li><a href="{{ pathto('Assessor/BuiltinAssessor') }}">Curve Fitting</a></li>
        </ul>
      </td>
      <td>
        <ul class="firstUl">
          <li><a href="{{ pathto('TrainingService/LocalMode') }}">Local Machine</a></li>
          <li><a href="{{ pathto('TrainingService/RemoteMachineMode') }}">Remote Servers</a></li>
          <li><b>Kubernetes based services</b></li>
          <ul class="circle">
            <li><a href="{{ pathto('TrainingService/PaiMode') }}">OpenPAI</a></li>
            <li><a href="{{ pathto('TrainingService/KubeflowMode') }}">Kubeflow</a></li>
            <li><a href="{{ pathto('TrainingService/FrameworkControllerMode') }}">FrameworkController on K8S
                (AKSetc.)</a>
            </li>
            <li><a href="{{ pathto('TrainingService/DLTSMode') }}">DLWorkspace (aka. DLTS)</a></li>
          </ul>
        </ul>
      </td>
    </tr>
    <tr valign="top">
      <td class="verticalMiddle"><b>References</b></td>
      <td>
        <ul class="firstUl">
          <li><a href="https://nni.readthedocs.io/en/latest/autotune_ref.html#trial">Python API</a></li>
          <li><a href="{{ pathto('Tutorial/AnnotationSpec') }}">NNI Annotation</a></li>
          <li><a href="https://nni.readthedocs.io/en/latest/installation.html">Supported OS</a></li>
        </ul>
      </td>
      <td>
        <ul class="firstUl">
          <li><a href="{{ pathto('Tuner/CustomizeTuner') }}">CustomizeTuner</a></li>
          <li><a href="{{ pathto('Assessor/CustomizeAssessor') }}">CustomizeAssessor</a></li>
        </ul>
      </td>
      <td>
        <ul class="firstUl">
          <li><a href="{{ pathto('TrainingService/SupportTrainingService') }}">Support TrainingService</a></li>
          <li><a href="{{ pathto('TrainingService/HowToImplementTrainingService') }}">Implement TrainingService</a></li>
        </ul>
      </td>
    </tr>
  </tbody>
</table>

<!-- Installation -->
<div>
  <h1 class="title">Installation</h1>
  <div>
    <h2 class="second-title">Install</h2>
    <p>
      NNI supports and is tested on Ubuntu >= 16.04, macOS >= 10.14.1,
      and Windows 10 >= 1809. Simply run the following `pip install`
      in an environment that has `python 64-bit >= 3.5`.
    </p>
    <div class="command-intro">Linux or macOS</div>
    <div class="command">python3 -m pip install --upgrade nni</div>
    <div class="command-intro">Windows</div>
    <div class="command">python -m pip install --upgrade nni</div>
    <p class="topMargin">If you want to try latest code, please <a href="{{ pathto('Installation') }}">install
        NNI</a> from source code.
    </p>
    <p>For detail system requirements of NNI, please refer to <a href="{{ pathto('Tutorial/InstallationLinux') }}">here</a>
      for Linux & macOS, and <a href="{{ pathto('Tutorial/InstallationWin') }}">here</a> for Windows.</p>
  </div>
  <div>
    <p>Note:</p>
    <ul>
      <li>If there is any privilege issue, add --user to install NNI in the user directory.</li>
      <li>Currently NNI on Windows supports local, remote and pai mode. Anaconda or Miniconda is highly
        recommended to install <a href="">NNI on Windows</a>.</li>
      <li>If there is any error like Segmentation fault, please refer to <a
          href="{{ pathto('Tutorial/Installation') }}">FAQ</a>. For FAQ on Windows, please refer
        to NNI on Windows.</li>
    </ul>
  </div>
  <div>
    <h2 class="second-title">Verify installation</h2>
    <p>
      The following example is built on TensorFlow 1.x. Make sure <b>TensorFlow 1.x is used</b> when running
      it.
    </p>
    <ul>
      <li>
        <p>Download the examples via clone the source code.</p>
        <div class="command">git clone -b v1.5 https://github.com/Microsoft/nni.git</div>
      </li>
      <li>
        <p>Run the MNIST example.</p>
        <div class="command-intro">Linux or macOS</div>
        <div class="command">nnictl create --config nni/examples/trials/mnist-tfv1/config.yml</div>
        <div class="command-intro">Windows</div>
        <div class="command">nnictl create --config nni\examples\trials\mnist-tfv1\config_windows.yml</div>
      </li>
      <li>
        <p>
          Wait for the message INFO: Successfully started experiment! in the command line.
          This message indicates that your experiment has been successfully started.
          You can explore the experiment using the Web UI url.
        </p>
        <!-- Indentation affects style! -->
        <pre class="code">
INFO: Starting restful server...
INFO: Successfully started Restful server!
INFO: Setting local config...
INFO: Successfully set local config!
INFO: Starting experiment...
INFO: Successfully started experiment!
-----------------------------------------------------------------------
The experiment id is egchD4qy
The Web UI urls are: http://223.255.255.1:8080   http://127.0.0.1:8080
-----------------------------------------------------------------------

You can use these commands to get more information about the experiment
-----------------------------------------------------------------------
  commands                       description
1. nnictl experiment show        show the information of experiments
2. nnictl trial ls               list all of trial jobs
3. nnictl top                    monitor the status of running experiments
4. nnictl log stderr             show stderr log content
5. nnictl log stdout             show stdout log content
6. nnictl stop                   stop an experiment
7. nnictl trial kill             kill a trial job by id
8. nnictl --help                 get help information about nnictl
-----------------------------------------------------------------------
</pre>
      </li>
      <li>
        Open the Web UI url in your browser, you can view detail information of the experiment and
        all the submitted trial jobs as shown below. <a href="{{ pathto('Tutorial/WebUI') }}">Here</a> are more Web UI
        pages.
        <div class="ui-img">
          <img src="_images/webui_overview_page.png">
          <img src="_images/webui_trialdetail_page.png">
        </div>
  </div>
  </li>
  </ul>
</div>

<!-- Documentation -->
<div>
  <h1 class="title">Documentation</h1>
  <ul>
    <li>To learn about what's NNI, read the <a href="{{ pathto('Overview') }}">NNI Overview</a>.</li>
    <li>To get yourself familiar with how to use NNI, read the <a href="{{ pathto('index') }}">documentation</a>.</li>
    <li>To get started and install NNI on your system, please refer to <a href="{{ pathto('installation') }}">Install NNI</a>.</li>
  </ul>
</div>

<!-- Contributing -->
<div>
  <h1 class="title">Contributing</h1>
  <p>
    This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor
    License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your
    contribution.
    For details, visit <a href="https://cla.microsoft.com">https://cla.microsoft.com</a>.
  </p>
  <p>
    When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and
    decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You
    will only need to do this once across all repos using our CLA.
  </p>
  <p>
    This project has adopted the <a href="https://opensource.microsoft.com/codeofconduct/">Microsoft Open Source Code of
      Conduct</a>. For more information see the Code of
    <a href="https://opensource.microsoft.com/codeofconduct/faq/">Conduct FAQ</a> or contact <a
      href="mailto:opencode@microsoft.com">opencode@microsoft.com</a> with any additional questions or comments.
  </p>
  <p>
    After getting familiar with contribution agreements, you are ready to create your first PR =), follow the NNI
    developer tutorials to get start:
  </p>
  <ul>
    <li>We recommend new contributors to start with simple issues: '<a
        href="https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22">good first
        issue</a>' or '<a
        href="https://github.com/microsoft/nni/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22">help-wanted</a>'.
    </li>
    <li><a href="{{ pathto('Tutorial/SetupNniDeveloperEnvironment') }}">NNI developer environment installation
        tutorial</a></li>
    <li><a href="{{ pathto('Tutorial/HowToDebug') }}">How to debug</a></li>
    <li>
      If you have any questions on usage, review <a href="{{ pathto('Tutorial/FAQ') }}">FAQ</a> first, if there are no
      relevant issues and answers to your
      question, try contact NNI dev team and users in
      <a
        href="https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge">Gitter</a>
      or
      <a href="https://github.com/microsoft/nni/issues/new/choose">File an issue</a> on GitHub.
    </li>
    <li><a href="{{ pathto('Tuner/CustomizeTuner') }}">Customize your own Tuner</a></li>
    <li><a href="{{ pathto('TrainingService/HowToImplementTrainingService') }}">Implement customized TrainingService</a>
    </li>
    <li><a href="{{ pathto('NAS/Advanced') }}">Implement a new NAS trainer on NNI</a></li>
    <li><a href="{{ pathto('Tuner/CustomizeAdvisor') }}">Customize your own Advisor</a></li>
  </ul>
</div>

<!-- External Repositories and References -->
<div>
  <h1 class="title">External Repositories and References</h1>
  <p>With authors' permission, we listed a set of NNI usage examples and relevant articles.</p>
  <ul>
    <h2>External Repositories</h2>
    <li>Run <a href="{{ pathto('NAS/ENAS') }}">ENAS</a> with NNI</li>
    <li>
      <a
        href="https://github.com/microsoft/nni/blob/master/examples/feature_engineering/auto-feature-engineering/README.md">Automatic
        Feature Engineering</a> with NNI
    </li>
    <li><a
        href="https://github.com/microsoft/recommenders/blob/master/notebooks/04_model_select_and_optimize/nni_surprise_svd.ipynb">Hyperparameter
        Tuning for Matrix Factorization</a> with NNI</li>
    <li><a href="https://github.com/ksachdeva/scikit-nni">scikit-nni</a> Hyper-parameter search for scikit-learn
      pipelines using NNI</li>
  </ul>

  <!-- Relevant Articles -->
  <ul>
    <h2>Relevant Articles</h2>
    <li><a href="{{ pathto('CommunitySharings/HpoComparision') }}">Hyper Parameter Optimization Comparison</a></li>
    <li><a href="{{ pathto('CommunitySharings/NasComparision') }}">Neural Architecture Search Comparison</a></li>
    <li><a href="{{ pathto('CommunitySharings/ParallelizingTpeSearch') }}">Parallelizing a Sequential Algorithm TPE</a>
    </li>
    <li><a href="{{ pathto('CommunitySharings/RecommendersSvd') }}">Automatically tuning SVD with NNI</a></li>
    <li><a href="{{ pathto('CommunitySharings/SptagAutoTune') }}">Automatically tuning SPTAG with NNI</a></li>
    <li><a
        href="https://towardsdatascience.com/find-thy-hyper-parameters-for-scikit-learn-pipelines-using-microsoft-nni-f1015b1224c1">
        Find thy hyper-parameters for scikit-learn pipelines using Microsoft NNI
      </a></li>
    <li>
      Blog (in Chinese) -
      <a
        href="http://gaocegege.com/Blog/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/katib-new#%E6%80%BB%E7%BB%93%E4%B8%8E%E5%88%86%E6%9E%90">
        AutoML tools (Advisor, NNI and Google Vizier) comparison
      </a>
      by @gaocegege - 总结与分析 section of design and implementation of kubeflow/katib
    </li>
    <li>
      Blog (in Chinese) -
      <a href="https://mp.weixin.qq.com/s/7_KRT-rRojQbNuJzkjFMuA">A summary of NNI new capabilities in 2019</a> by @squirrelsc
    </li>
  </ul>
</div>

<!-- feedback -->
<div>
  <h1 class="title">Feedback</h1>
  <ul>
    <li><a href="https://github.com/microsoft/nni/issues/new/choose">File an issue</a> on GitHub.</li>
    <li>Ask a question with NNI tags on <a
        href="https://stackoverflow.com/questions/tagged/nni?sort=Newest&edited=true">Stack Overflow</a>.
    </li>
    <li>Discuss on the NNI <a
        href="https://gitter.im/Microsoft/nni?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge">Gitter</a>
      in NNI.</li>
  </ul>
  <div>
    <div>Join IM discussion groups:</div>
    <table border=1 style="border-collapse: collapse;">
      <tbody>
        <tr style="line-height: 30px;">
          <th>Gitter</th>
          <td></td>
          <th>WeChat</th>
        </tr>
        <tr>
          <td class="QR">
            <img src="https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png" alt="Gitter" />
          </td>
          <td width="80" align="center" class="or">OR</td>
          <td class="QR">
            <img src="https://github.com/scarlett2018/nniutil/raw/master/wechat.png" alt="NNI Wechat" />
          </td>
        </tr>
      </tbody>
    </table>
  </div>
</div>

<!-- Related Projects -->
<div>
  <h1 class="title">Related Projects</h1>
  <p>
    Targeting at openness and advancing state-of-art technology,
    <a href="https://www.microsoft.com/en-us/research/group/systems-research-group-asia/">Microsoft Research (MSR)</a>
    had also released few
    other open source projects.</p>
  <ul id="relatedProject">
    <li>
      <a href="https://github.com/Microsoft/pai">OpenPAI</a> : an open source platform that provides complete AI model
      training and resource management
      capabilities, it is easy to extend and supports on-premise,
      cloud and hybrid environments in various scale.
    </li>
    <li>
      <a href="https://github.com/Microsoft/frameworkcontroller">FrameworkController</a> : an open source
      general-purpose Kubernetes Pod Controller that orchestrate
      all kinds of applications on Kubernetes by a single controller.
    </li>
    <li>
      <a href="https://github.com/Microsoft/MMdnn">MMdnn</a> : A comprehensive, cross-framework solution to convert,
      visualize and diagnose deep neural network
      models. The "MM" in MMdnn stands for model management
      and "dnn" is an acronym for deep neural network.
    </li>
    <li>
      <a href="https://github.com/Microsoft/SPTAG">SPTAG</a> : Space Partition Tree And Graph (SPTAG) is an open
      source library
      for large scale vector approximate nearest neighbor search scenario.
    </li>
  </ul>
  <p>We encourage researchers and students leverage these projects to accelerate the AI development and research.</p>
</div>

<!-- License -->
<div>
  <h1 class="title">License</h1>
  <p>The entire codebase is under <a href="https://github.com/microsoft/nni/blob/master/LICENSE">MIT license</a></p>
</div>
</div>
{% endblock %}