"tests/pegasus/test_modeling_tf_pegasus.py" did not exist on "23e5a36ee670150a632cfa8004de2c7244f305aa"
test_highlevel_apis.py 41.2 KB
Newer Older
1
import math
2
3
import random
import unittest
4
from collections import Counter
5

6
7
import pytest

8
9
10
import nni.retiarii.nn.pytorch as nn
import torch
import torch.nn.functional as F
Yuge Zhang's avatar
Yuge Zhang committed
11
from nni.retiarii import InvalidMutation, Sampler, basic_unit
12
13
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
14
from nni.retiarii.evaluator import FunctionalEvaluator
15
from nni.retiarii.execution.utils import _unpack_if_only_one
16
17
18
from nni.retiarii.graph import Model
from nni.retiarii.nn.pytorch.api import ValueChoice
from nni.retiarii.nn.pytorch.mutator import process_evaluator_mutations, process_inline_mutation, extract_mutation_from_pt_module
19
from nni.retiarii.serializer import model_wrapper
20
from nni.retiarii.utils import ContextStack, original_state_dict_hooks
21
22


23
class EnumerateSampler(Sampler):
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


42
@basic_unit
43
44
45
46
47
48
49
50
51
52
53
54
55
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


56
57
58
59
60
61
62
63
64
65
def _apply_all_mutators(model, mutators, samplers):
    if not isinstance(samplers, list):
        samplers = [samplers for _ in range(len(mutators))]
    assert len(samplers) == len(mutators)
    model_new = model
    for mutator, sampler in zip(mutators, samplers):
        model_new = mutator.bind_sampler(sampler).apply(model_new)
    return model_new


66
class GraphIR(unittest.TestCase):
67
68
    # graph engine will have an extra mutator for parameter choices
    value_choice_incr = 1
69
70
71
72
73
74
75
76
77
78
79

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

80
81
82
83
84
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

85
    def test_layer_choice(self):
86
        @model_wrapper
87
88
89
90
91
92
93
94
95
96
97
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

98
        model, mutators = self._get_model_with_mutators(Net())
99
        self.assertEqual(len(mutators), 1)
100
        mutator = mutators[0].bind_sampler(EnumerateSampler())
101
102
103
104
105
106
107
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

108
    def test_layer_choice_multiple(self):
109
        @model_wrapper
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            self.assertEqual(self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3)).size(),
                             torch.Size([1, i, 3, 3]))

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    def test_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            model_new = self._get_converted_pytorch_model(model_new)
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            inp = torch.randn(1, 3, 3, 3)
            a = getattr(orig_model.module, str(i - 1))(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

149
    def test_nested_layer_choice(self):
150
        @model_wrapper
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 3, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 1, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 5, 5, 5]))

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def test_nested_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)

        for i in range(3):
            model_new = self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            if i == 0:
                a = getattr(getattr(orig_model.module, '0'), '0')(input)
            elif i == 1:
                a = getattr(orig_model.module, '1')(input)
            elif i == 2:
                a = getattr(getattr(orig_model.module, '0'), '2')(input)
            b = model_new(input)
            self.assertLess((a - b).abs().max().item(), 1E-4)

210
    def test_input_choice(self):
211
        @model_wrapper
212
213
214
215
216
217
218
219
220
221
222
223
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

224
        model, mutators = self._get_model_with_mutators(Net())
225
        self.assertEqual(len(mutators), 1)
226
        mutator = mutators[0].bind_sampler(EnumerateSampler())
227
228
229
230
231
232
233
234
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
235
        @model_wrapper
236
237
238
239
240
241
242
243
244
245
246
247
248
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
249
            model, mutators = self._get_model_with_mutators(Net(reduction))
250
            self.assertEqual(len(mutators), 1)
251
            mutator = mutators[0].bind_sampler(EnumerateSampler())
252
253
254
255
256
257
258
259
260
261
262
263
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
264
        @model_wrapper
265
266
267
268
269
270
271
272
273
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

274
        model, mutators = self._get_model_with_mutators(Net())
275
        self.assertEqual(len(mutators), 1)
276
        mutator = mutators[0].bind_sampler(EnumerateSampler())
277
278
279
280
281
282
283
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

284
    def test_value_choice_as_parameter(self):
285
        @model_wrapper
286
287
288
289
290
291
292
293
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

294
        model, mutators = self._get_model_with_mutators(Net())
295
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
296
297
298
299
300
301
302
303
304
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
305
        @model_wrapper
306
307
308
309
310
311
312
313
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

314
        model, mutators = self._get_model_with_mutators(Net())
315
316
317
318
        self.assertEqual(len(mutators), self.value_choice_incr + 1)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
319
320
321
322
323
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

324
    def test_value_choice_as_two_parameters(self):
325
        @model_wrapper
326
327
328
329
330
331
332
333
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

334
        model, mutators = self._get_model_with_mutators(Net())
335
336
337
338
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
339
        input = torch.randn(1, 3, 5, 5)
340
        self.assertEqual(self._get_converted_pytorch_model(model1)(input).size(),
341
                         torch.Size([1, 6, 3, 3]))
342
        self.assertEqual(self._get_converted_pytorch_model(model2)(input).size(),
343
344
345
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
346
        @model_wrapper
347
348
349
350
351
352
353
354
355
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

356
        model, mutators = self._get_model_with_mutators(Net())
357
358
359
360
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
361
362
363
364
365
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

366
    def test_value_choice_in_functional(self):
367
        @model_wrapper
368
369
370
371
372
373
374
375
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

376
        model, mutators = self._get_model_with_mutators(Net())
377
        self.assertEqual(len(mutators), 1)
378
        mutator = mutators[0].bind_sampler(EnumerateSampler())
379
380
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
381
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
382
383
384
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

385
    def test_value_choice_in_layer_choice(self):
386
        @model_wrapper
387
388
389
390
391
392
393
394
395
396
397
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

398
        model, mutators = self._get_model_with_mutators(Net())
399
        self.assertEqual(len(mutators), 3 + self.value_choice_incr)
400
401
402
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
403
            model_new = _apply_all_mutators(model, mutators, sampler)
404
405
406
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

407
    def test_shared(self):
408
        @model_wrapper
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

425
        model, mutators = self._get_model_with_mutators(Net())
426
427
428
429
430
431
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

432
        model, mutators = self._get_model_with_mutators(Net(shared=False))
433
434
435
436
437
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
438
            model_new = model
439
            for mutator in mutators:
440
                model_new = mutator.bind_sampler(sampler).apply(model_new)
441
442
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
443
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
444
445
446
447
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
448

449
    def test_valuechoice_getitem(self):
450
        @model_wrapper
451
452
453
454
455
456
457
458
459
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

460
        model, mutators = self._get_model_with_mutators(Net())
461
462
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
463
        input = torch.randn(1, 3, 5, 5)
464
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
465
                         torch.Size([1, 6, 3, 3]))
466
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
467
468
                         torch.Size([1, 8, 1, 1]))

469
        @model_wrapper
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

484
        model, mutators = self._get_model_with_mutators(Net2())
485
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
486
        input = torch.randn(1, 3, 5, 5)
487
        self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, EnumerateSampler()))(input)
488

489
    def test_valuechoice_getitem_functional(self):
490
        @model_wrapper
491
492
493
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
494
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
495
496
497
498

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

499
        model, mutators = self._get_model_with_mutators(Net())
500
501
502
503
504
505
506
507
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

508
    def test_valuechoice_getitem_functional_expression(self):
509
        @model_wrapper
510
511
512
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
513
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
514
515
516
517
518
519

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

520
        model, mutators = self._get_model_with_mutators(Net())
521
522
523
524
525
526
527
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    def test_valuechoice_multi(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                choice1 = nn.ValueChoice([{"in": 1, "out": 3}, {"in": 2, "out": 6}, {"in": 3, "out": 9}])
                choice2 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                choice3 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                self.conv1 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice2), 1)
                self.conv2 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice3), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler()] + [RandomSampler() for _ in range(self.value_choice_incr + 1)]

        for i in range(10):
            model_new = _apply_all_mutators(model, mutators, samplers)
            result = self._get_converted_pytorch_model(model_new)(torch.randn(1, i % 3 + 1, 3, 3))
            self.assertIn(result.size(), [torch.Size([1, round((i % 3 + 1) * 3 * k), 3, 3]) for k in [2.5, 3.0, 3.5]])

    def test_valuechoice_inconsistent_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([3, 5], label='a'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([3, 6], label='a'), 1)

            def forward(self, x):
                return torch.cat([self.conv1(x), self.conv2(x)], 1)

        with pytest.raises(AssertionError):
            self._get_model_with_mutators(Net())

566
567
568
569
570
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

571
        @model_wrapper
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        model3 = mutator.apply(model)
        self.assertTrue((self._get_converted_pytorch_model(model1)(torch.zeros(1, 16)) == 3).all())
        self.assertTrue((self._get_converted_pytorch_model(model2)(torch.zeros(1, 16)) == 4).all())
        self.assertTrue((self._get_converted_pytorch_model(model3)(torch.zeros(1, 16)) == 5).all())

Yuge Zhang's avatar
Yuge Zhang committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
    def test_repeat_complex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(nn.LayerChoice([AddOne(), nn.Identity()], label='lc'), (3, 5), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        self.assertEqual(set([mutator.label for mutator in mutators]), {'lc', 'rep'})

        sampler = RandomSampler()
        for _ in range(10):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result = self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item()
            self.assertIn(result, [0., 3., 4., 5.])

        # independent layer choice
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), (2, 3), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 4)

        result = []
        for _ in range(20):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        self.assertIn(1., result)

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    def test_repeat_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.Repeat(lambda index: nn.Conv2d(3, 3, 1), (2, 5))

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        inp = torch.randn(1, 3, 5, 5)

        for i in range(4):
            model_new = self._get_converted_pytorch_model(mutator.apply(model))
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)

            a = nn.Sequential(*orig_model.module.blocks[:i + 2])(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

662
    def test_cell(self):
663
        @model_wrapper
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

682
        @model_wrapper
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)], num_nodes=4)

            def forward(self, x):
                return self.cell([x])

        raw_model, mutators = self._get_model_with_mutators(Net2())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    def test_cell_predecessors(self):
        from typing import List, Tuple

        class Preprocessor(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 16)

            def forward(self, x: List[torch.Tensor]) -> List[torch.Tensor]:
                return [self.linear(x[0]), x[1]]

        class Postprocessor(nn.Module):
            def forward(self, this: torch.Tensor, prev: List[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
                return prev[-1], this

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': nn.Linear(16, 16),
                    'second': nn.Linear(16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2,
                preprocessor=Preprocessor(), postprocessor=Postprocessor(), merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            result = self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16))
            self.assertTrue(result[0].size() == torch.Size([1, 16]))
            self.assertTrue(result[1].size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
738
    def test_nasbench201_cell(self):
739
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench201Cell([
                    lambda x, y: nn.Linear(x, y),
                    lambda x, y: nn.Linear(x, y, bias=False)
                ], 10, 16)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))

759
    def test_autoactivation(self):
760
        @model_wrapper
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.act = nn.AutoActivation()

            def forward(self, x):
                return self.act(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 10]))

777
778

class Python(GraphIR):
779
780
781
    # Python engine doesn't have the extra mutator
    value_choice_incr = 0

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
798
    def test_valuechoice_getitem_functional(self): ...
799
800

    @unittest.skip
801
    def test_valuechoice_getitem_functional_expression(self): ...
Yuge Zhang's avatar
Yuge Zhang committed
802

803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
    def test_cell_loose_end(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='loose_end')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        any_not_all = False
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            model = self._get_converted_pytorch_model(model)
            indices = model.cell.output_node_indices
            assert all(i > 2 for i in indices)
            self.assertTrue(model(torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 16 * len(indices)]))
            if len(indices) < 4:
                any_not_all = True
        self.assertTrue(any_not_all)

    def test_cell_complex(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell({
                    'first': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16),
                    'second': lambda _, __, chosen: nn.Linear(3 if chosen == 0 else 16, 16, bias=False)
                }, num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16)).size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
851
852
    def test_nasbench101_cell(self):
        # this is only supported in python engine for now.
853
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench101Cell([lambda x: nn.Linear(x, x), lambda x: nn.Linear(x, x, bias=False)],
                                               10, 16, lambda x, y: nn.Linear(x, y), max_num_nodes=5, max_num_edges=7)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())

        succeeded = 0
        sampler = RandomSampler()
        while succeeded <= 10:
            try:
                model = raw_model
                for mutator in mutators:
                    model = mutator.bind_sampler(sampler).apply(model)
                succeeded += 1
            except InvalidMutation:
                continue
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))
876
877
878
879
880


class Shared(unittest.TestCase):
    # This kind of tests are general across execution engines

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    def test_value_choice_api_purely(self):
        a = nn.ValueChoice([1, 2], label='a')
        b = nn.ValueChoice([3, 4], label='b')
        c = nn.ValueChoice([5, 6], label='c')
        d = a + b + 3 * c
        for i, choice in enumerate(d.inner_choices()):
            if i == 0:
                assert choice.candidates == [1, 2]
            elif i == 1:
                assert choice.candidates == [3, 4]
            elif i == 2:
                assert choice.candidates == [5, 6]
        assert d.evaluate([2, 3, 5]) == 20

        a = nn.ValueChoice(['cat', 'dog'])
        b = nn.ValueChoice(['milk', 'coffee'])
        assert (a + b).evaluate(['dog', 'coffee']) == 'dogcoffee'
        assert (a + 2 * b).evaluate(['cat', 'milk']) == 'catmilkmilk'

        assert (3 - nn.ValueChoice([1, 2])).evaluate([1]) == 2

        with pytest.raises(TypeError):
            a + nn.ValueChoice([1, 3])

        a = nn.ValueChoice([1, 17])
        a = (abs(-a * 3) % 11) ** 5
        assert 'abs' in repr(a)
        with pytest.raises(ValueError):
            a.evaluate([42])
        assert a.evaluate([17]) == 7 ** 5

        a = round(7 / nn.ValueChoice([2, 5]))
        assert a.evaluate([2]) == 4

        a = ~(77 ^ (nn.ValueChoice([1, 4]) & 5))
        assert a.evaluate([4]) == ~(77 ^ (4 & 5))

        a = nn.ValueChoice([5, 3]) * nn.ValueChoice([6.5, 7.5])
        assert math.floor(a.evaluate([5, 7.5])) == int(5 * 7.5)

        a = nn.ValueChoice([1, 3])
        b = nn.ValueChoice([2, 4])
        with pytest.raises(RuntimeError):
            min(a, b)
        with pytest.raises(RuntimeError):
            if a < b:
                ...

        assert nn.ValueChoice.min(a, b).evaluate([3, 2]) == 2
        assert nn.ValueChoice.max(a, b).evaluate([3, 2]) == 3
        assert nn.ValueChoice.max(1, 2, 3) == 3
        assert nn.ValueChoice.max([1, 3, 2]) == 3

        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([3]) == 'b'
        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([2]) == 'a'

        with pytest.raises(RuntimeError):
            assert int(nn.ValueChoice([2.5, 3.5])).evalute([2.5]) == 2

        assert nn.ValueChoice.to_int(nn.ValueChoice([2.5, 3.5])).evaluate([2.5]) == 2
        assert nn.ValueChoice.to_float(nn.ValueChoice(['2.5', '3.5'])).evaluate(['3.5']) == 3.5

    def test_make_divisible(self):
        def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = nn.ValueChoice.max(min_value, nn.ValueChoice.to_int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            return nn.ValueChoice.condition(new_value < min_ratio * value, new_value + divisor, new_value)

        def original_make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            if new_value < min_ratio * value:
                new_value += divisor
            return new_value

        values = [4, 8, 16, 32, 64, 128]
        divisors = [2, 3, 5, 7, 15]
        with pytest.raises(RuntimeError):
            original_make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        result = make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        for value in values:
            for divisor in divisors:
                lst = [value if choice.label == 'value' else divisor for choice in result.inner_choices()]
                assert result.evaluate(lst) == original_make_divisible(value, divisor)

970
971
972
973
974
975
976
977
978
    def test_valuechoice_in_evaluator(self):
        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=2)
        assert process_evaluator_mutations(evaluator, []) == []

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        mutators = process_evaluator_mutations(evaluator, [])
979
        assert len(mutators) == 3
980
981
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
982
983
        samplers = [EnumerateSampler() for _ in range(3)]
        model = _apply_all_mutators(init_model, mutators, samplers)
984
        assert model.evaluator.trace_kwargs['x'] == 1
985
        model = _apply_all_mutators(init_model, mutators, samplers)
986
987
988
989
990
        assert model.evaluator.trace_kwargs['x'] == 2

        # share label
        evaluator = FunctionalEvaluator(foo, t=ValueChoice([1, 2], label='x'), x=ValueChoice([1, 2], label='x'))
        mutators = process_evaluator_mutations(evaluator, [])
991
        assert len(mutators) == 2
992
993
994
995
996

        # getitem
        choice = ValueChoice([{"a": 1, "b": 2}, {"a": 3, "b": 4}])
        evaluator = FunctionalEvaluator(foo, t=1, x=choice['a'], y=choice['b'])
        mutators = process_evaluator_mutations(evaluator, [])
997
        assert len(mutators) == 2
998
999
1000
1001
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        sampler = RandomSampler()
        for _ in range(10):
1002
            model = _apply_all_mutators(init_model, mutators, sampler)
1003
            assert (model.evaluator.trace_kwargs['x'], model.evaluator.trace_kwargs['y']) in [(1, 2), (3, 4)]
1004
1005
1006
1007
1008
1009
1010

    def test_retiarii_nn_import(self):
        dummy = torch.zeros(1, 16, 32, 24)
        nn.init.uniform_(dummy)

        conv = nn.Conv2d(1, 3, 1)
        param = nn.Parameter(torch.zeros(1, 3, 24, 24))