test_pruners.py 6.69 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from unittest import TestCase, main
from nni.compression.torch import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
11
12
    L2FilterPruner, AGP_Pruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner, \
    TaylorFOWeightFilterPruner
chicm-ms's avatar
chicm-ms committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg

prune_config = {
    'level': {
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, False),
            lambda model: validate_sparsity(model.fc, 0.5, False)
        ]
    },
    'agp': {
        'pruner_class': AGP_Pruner,
        'config_list': [{
38
            'initial_sparsity': 0.,
chicm-ms's avatar
chicm-ms committed
39
40
41
42
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
43
            'op_types': ['Conv2d']
chicm-ms's avatar
chicm-ms committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        }],
        'validators': []
    },
    'slim': {
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.bn1, 0.7, model.bias)
        ]
    },
    'fpgm': {
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l1': {
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l2': {
        'pruner_class': L2FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
87
88
89
90
91
92
93
94
95
96
    'taylorfo': {
        'pruner_class': TaylorFOWeightFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
chicm-ms's avatar
chicm-ms committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    'mean_activation': {
        'pruner_class': ActivationMeanRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'apoz': {
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    }
}

class Model(nn.Module):
    def __init__(self, bias=True):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, padding=1, bias=bias)
        self.bn1 = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(8, 2, bias=bias)
        self.bias = bias
    def forward(self, x):
        return self.fc(self.pool(self.bn1(self.conv1(x))).view(x.size(0), -1))

130
def pruners_test(pruner_names=['agp', 'level', 'slim', 'fpgm', 'l1', 'l2', 'taylorfo', 'mean_activation', 'apoz'], bias=True):
chicm-ms's avatar
chicm-ms committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    for pruner_name in pruner_names:
        model = Model(bias=bias)
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config[pruner_name]['config_list']

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        pruner = prune_config[pruner_name]['pruner_class'](model, config_list, optimizer)
        pruner.compress()

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

155
156
157
158
159
        if pruner_name == 'taylorfo':
            # taylorfo algorithm calculate contributions at first iteration(step), and do pruning
            # when iteration >= statistics_batch_num (default 1)
            optimizer.step()

chicm-ms's avatar
chicm-ms committed
160
161
162
163
164
165
166
167
168
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,1,28,28))

        for v in prune_config[pruner_name]['validators']:
            v(model)

    os.remove('./model_tmp.pth')
    os.remove('./mask_tmp.pth')
    os.remove('./onnx_tmp.pth')

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def test_agp(pruning_algorithm):
        model = Model()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config['agp']['config_list']

        pruner = AGP_Pruner(model, config_list, optimizer, pruning_algorithm=pruning_algorithm)
        pruner.compress()

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()

        for epoch in range(config_list[0]['start_epoch'], config_list[0]['end_epoch']+1):
            pruner.update_epoch(epoch)
            out = model(x)
            loss = F.cross_entropy(out, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            target_sparsity = pruner.compute_target_sparsity(config_list[0])
            actual_sparsity = (model.conv1.weight_mask == 0).sum().item() / model.conv1.weight_mask.numel()
            # set abs_tol = 0.2, considering the sparsity error for channel pruning when number of channels is small.
            assert math.isclose(actual_sparsity, target_sparsity, abs_tol=0.2)

chicm-ms's avatar
chicm-ms committed
193
194
195
196
197
198
199
class PrunerTestCase(TestCase):
    def test_pruners(self):
        pruners_test(bias=True)

    def test_pruners_no_bias(self):
        pruners_test(bias=False)

200
201
202
203
204
205
206
207
    def test_agp_pruner(self):
        for pruning_algorithm in ['l1', 'l2', 'taylorfo', 'apoz']:
            test_agp(pruning_algorithm)

        for pruning_algorithm in ['level']:
            prune_config['agp']['config_list'][0]['op_types'] = ['default']
            test_agp(pruning_algorithm)

chicm-ms's avatar
chicm-ms committed
208
209
if __name__ == '__main__':
    main()