micro.py 5.76 KB
Newer Older
liuzhe-lz's avatar
liuzhe-lz committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import tensorflow as tf
from tensorflow.keras import Model, Sequential
from tensorflow.keras.layers import (
    AveragePooling2D,
    BatchNormalization,
    Conv2D,
    Dense,
    Dropout,
    GlobalAveragePooling2D,
    MaxPool2D,
    ReLU,
    SeparableConv2D,
)

from nni.nas.tensorflow.mutables import InputChoice, LayerChoice, MutableScope


def build_conv_1x1(filters, name=None):
    return Sequential([
        Conv2D(filters, kernel_size=1, use_bias=False),
        BatchNormalization(trainable=False),
        ReLU(),
    ], name)

def build_sep_conv(filters, kernel_size, name=None):
    return Sequential([
        ReLU(),
        SeparableConv2D(filters, kernel_size, padding='same'),
        BatchNormalization(trainable=True),
    ], name)


class FactorizedReduce(Model):
    def __init__(self, filters):
        super().__init__()
        self.conv1 = Conv2D(filters // 2, kernel_size=1, strides=2, use_bias=False)
        self.conv2 = Conv2D(filters // 2, kernel_size=1, strides=2, use_bias=False)
        self.bn = BatchNormalization(trainable=False)

    def call(self, x):
        out1 = self.conv1(x)
        out2 = self.conv2(x[:, 1:, 1:, :])
        out = tf.concat([out1, out2], axis=3)
        out = self.bn(out)
        return out


class ReductionLayer(Model):
    def __init__(self, filters):
        super().__init__()
        self.reduce0 = FactorizedReduce(filters)
        self.reduce1 = FactorizedReduce(filters)

    def call(self, prevprev, prev):
        return self.reduce0(prevprev), self.reduce1(prev)


class Calibration(Model):
    def __init__(self, filters):
        super().__init__()
        self.filters = filters
        self.process = None

    def build(self, shape):
        assert len(shape) == 4  # batch_size, width, height, filters
        if shape[3] != self.filters:
            self.process = build_conv_1x1(self.filters)

    def call(self, x):
        if self.process is None:
            return x
        return self.process(x)


class Cell(Model):
    def __init__(self, cell_name, prev_labels, filters):
        super().__init__()
        self.input_choice = InputChoice(choose_from=prev_labels, n_chosen=1, return_mask=True, key=cell_name + '_input')
        self.op_choice = LayerChoice([
            build_sep_conv(filters, 3),
            build_sep_conv(filters, 5),
            AveragePooling2D(pool_size=3, strides=1, padding='same'),
            MaxPool2D(pool_size=3, strides=1, padding='same'),
            Sequential(),  # Identity
        ], key=cell_name + '_op')

    def call(self, prev_layers):
        chosen_input, chosen_mask = self.input_choice(prev_layers)
        cell_out = self.op_choice(chosen_input)
        return cell_out, chosen_mask


class Node(MutableScope):
    def __init__(self, node_name, prev_node_names, filters):
        super().__init__(node_name)
        self.cell_x = Cell(node_name + '_x', prev_node_names, filters)
        self.cell_y = Cell(node_name + '_y', prev_node_names, filters)

    def call(self, prev_layers):
        out_x, mask_x = self.cell_x(prev_layers)
        out_y, mask_y = self.cell_y(prev_layers)
        return out_x + out_y, mask_x | mask_y


class ENASLayer(Model):
    def __init__(self, num_nodes, filters, reduction):
        super().__init__()
        self.preproc0 = Calibration(filters)
        self.preproc1 = Calibration(filters)

        self.nodes = []
        node_labels = [InputChoice.NO_KEY, InputChoice.NO_KEY]
        name_prefix = 'reduce' if reduction else 'normal'
        for i in range(num_nodes):
            node_labels.append('{}_node_{}'.format(name_prefix, i))
            self.nodes.append(Node(node_labels[-1], node_labels[:-1], filters))

        self.conv_ops = [Conv2D(filters, kernel_size=1, padding='same', use_bias=False) for _ in range(num_nodes + 2)]
        self.bn = BatchNormalization(trainable=False)

    def call(self, prevprev, prev):
        prev_nodes_out = [self.preproc0(prevprev), self.preproc1(prev)]
        nodes_used_mask = tf.zeros(len(self.nodes) + 2, dtype=tf.bool)
        for i, node in enumerate(self.nodes):
            node_out, mask = node(prev_nodes_out)
            nodes_used_mask |= tf.pad(mask, [[0, nodes_used_mask.shape[0] - mask.shape[0]]])
            prev_nodes_out.append(node_out)

        outputs = []
        for used, out, conv in zip(nodes_used_mask.numpy(), prev_nodes_out, self.conv_ops):
            if not used:
                outputs.append(conv(out))
        out = tf.add_n(outputs)
        return prev, self.bn(out)


class MicroNetwork(Model):
    def __init__(self, num_layers=6, num_nodes=5, out_channels=20, num_classes=10, dropout_rate=0.1):
        super().__init__()
        self.num_layers = num_layers
        self.stem = Sequential([
            Conv2D(out_channels * 3, kernel_size=3, padding='same', use_bias=False),
            BatchNormalization(),
        ])

        pool_distance = num_layers // 3
        pool_layer_indices = [pool_distance, 2 * pool_distance + 1]

        self.enas_layers = []

        filters = out_channels
        for i in range(num_layers + 2):
            if i in pool_layer_indices:
                reduction = True
                filters *= 2
                self.enas_layers.append(ReductionLayer(filters))
            else:
                reduction = False
            self.enas_layers.append(ENASLayer(num_nodes, filters, reduction))

        self.gap = GlobalAveragePooling2D()
        self.dropout = Dropout(dropout_rate)
        self.dense = Dense(num_classes)

    def call(self, x):
        prev = cur = self.stem(x)
        for layer in self.enas_layers:
            prev, cur = layer(prev, cur)
        cur = tf.keras.activations.relu(cur)
        cur = self.gap(cur)
        cur = self.dropout(cur)
        logits = self.dense(cur)
        return logits