test_serializer.py 8.79 KB
Newer Older
1
2
import math
import sys
3
from pathlib import Path
4

5
import pytest
6
7
import nni
import torch
8
9
10
11
12
13
14
15
16
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST

from nni.common.serializer import is_traceable

if True:  # prevent auto formatting
    sys.path.insert(0, Path(__file__).parent.as_posix())
    from imported.model import ImportTest
17

18
19
20
21
    # this test cannot be directly put in this file. It will cause syntax error for python <= 3.7.
    if tuple(sys.version_info) >= (3, 8):
        from imported._test_serializer_py38 import test_positional_only

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

@nni.trace
class SimpleClass:
    def __init__(self, a, b=1):
        self._a = a
        self._b = b


class UnserializableSimpleClass:
    def __init__(self):
        self._a = 1


def test_simple_class():
    instance = SimpleClass(1, 2)
    assert instance._a == 1
    assert instance._b == 2

    dump_str = nni.dump(instance)
    assert '"__kwargs__": {"a": 1, "b": 2}' in dump_str
    assert '"__symbol__"' in dump_str
    instance = nni.load(dump_str)
44
45
    assert instance._a == 1
    assert instance._b == 2
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64


def test_external_class():
    from collections import OrderedDict
    d = nni.trace(kw_only=False)(OrderedDict)([('a', 1), ('b', 2)])
    assert d['a'] == 1
    assert d['b'] == 2
    dump_str = nni.dump(d)
    assert dump_str == '{"a": 1, "b": 2}'

    conv = nni.trace(torch.nn.Conv2d)(3, 16, 3)
    assert conv.in_channels == 3
    assert conv.out_channels == 16
    assert conv.kernel_size == (3, 3)
    assert nni.dump(conv) == \
        r'{"__symbol__": "path:torch.nn.modules.conv.Conv2d", ' \
        r'"__kwargs__": {"in_channels": 3, "out_channels": 16, "kernel_size": 3}}'

    conv = nni.load(nni.dump(conv))
65
    assert conv.kernel_size == (3, 3)
66
67
68
69
70
71
72
73


def test_nested_class():
    a = SimpleClass(1, 2)
    b = SimpleClass(a)
    assert b._a._a == 1
    dump_str = nni.dump(b)
    b = nni.load(dump_str)
74
75
    assert 'SimpleClass object at' in repr(b)
    assert b._a._a == 1
76
77
78
79
80
81
82
83
84


def test_unserializable():
    a = UnserializableSimpleClass()
    dump_str = nni.dump(a)
    a = nni.load(dump_str)
    assert a._a == 1


85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def test_function():
    t = nni.trace(math.sqrt, kw_only=False)(3)
    assert 1 < t < 2
    assert t.trace_symbol == math.sqrt
    assert t.trace_args == [3]
    t = nni.load(nni.dump(t))
    assert 1 < t < 2
    assert not is_traceable(t)  # trace not recovered, expected, limitation

    def simple_class_factory(bb=3.):
        return SimpleClass(1, bb)

    t = nni.trace(simple_class_factory)(4)
    ts = nni.dump(t)
    assert '__kwargs__' in ts
    t = nni.load(ts)
    assert t._a == 1
    assert is_traceable(t)
    t = t.trace_copy()
    assert is_traceable(t)
    assert t.trace_symbol(10)._b == 10
    assert t.trace_kwargs['bb'] == 4
    assert is_traceable(t.trace_copy())


class Foo:
    def __init__(self, a, b=1):
        self.aa = a
        self.bb = [b + 1 for _ in range(1000)]

    def __eq__(self, other):
        return self.aa == other.aa and self.bb == other.bb


def test_custom_class():
    module = nni.trace(Foo)(3)
    assert nni.load(nni.dump(module)) == module
    module = nni.trace(Foo)(b=2, a=1)
    assert nni.load(nni.dump(module)) == module

    module = nni.trace(Foo)(Foo(1), 5)
    dumped_module = nni.dump(module)
    assert len(dumped_module) > 200  # should not be too longer if the serialization is correct

    module = nni.trace(Foo)(nni.trace(Foo)(1), 5)
    dumped_module = nni.dump(module)
    assert nni.load(dumped_module) == module


class Foo:
    def __init__(self, a, b=1):
        self.aa = a
        self.bb = [b + 1 for _ in range(1000)]

    def __eq__(self, other):
        return self.aa == other.aa and self.bb == other.bb


def test_basic_unit_and_custom_import():
    module = ImportTest(3, 0.5)
    ss = nni.dump(module)
    assert ss == r'{"__symbol__": "path:imported.model.ImportTest", "__kwargs__": {"foo": 3, "bar": 0.5}}'
    assert nni.load(nni.dump(module)) == module

    import nni.retiarii.nn.pytorch as nn
    module = nn.Conv2d(3, 10, 3, bias=False)
    ss = nni.dump(module)
    assert ss == r'{"__symbol__": "path:torch.nn.modules.conv.Conv2d", "__kwargs__": {"in_channels": 3, "out_channels": 10, "kernel_size": 3, "bias": false}}'
    assert nni.load(ss).bias is None


def test_dataset():
    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True)
    dataloader = nni.trace(DataLoader)(dataset, batch_size=10)

    dumped_ans = {
        "__symbol__": "path:torch.utils.data.dataloader.DataLoader",
        "__kwargs__": {
            "dataset": {
                "__symbol__": "path:torchvision.datasets.mnist.MNIST",
                "__kwargs__": {"root": "data/mnist", "train": False, "download": True}
            },
            "batch_size": 10
        }
    }
    print(nni.dump(dataloader))
    print(nni.dump(dumped_ans))
    assert nni.dump(dataloader) == nni.dump(dumped_ans)
    dataloader = nni.load(nni.dump(dumped_ans))
    assert isinstance(dataloader, DataLoader)

    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True,
                               transform=nni.trace(transforms.Compose)([
                                   nni.trace(transforms.ToTensor)(),
                                   nni.trace(transforms.Normalize)((0.1307,), (0.3081,))
                               ]))
    dataloader = nni.trace(DataLoader)(dataset, batch_size=10)
    x, y = next(iter(nni.load(nni.dump(dataloader))))
    assert x.size() == torch.Size([10, 1, 28, 28])
    assert y.size() == torch.Size([10])

    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True,
                               transform=nni.trace(transforms.Compose)(
                                   [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
                               ))
    dataloader = nni.trace(DataLoader)(dataset, batch_size=10)
    x, y = next(iter(nni.load(nni.dump(dataloader))))
    assert x.size() == torch.Size([10, 1, 28, 28])
    assert y.size() == torch.Size([10])


196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
@pytest.mark.skipif(sys.platform != 'linux', reason='https://github.com/microsoft/nni/issues/4434')
def test_multiprocessing_dataloader():
    # check whether multi-processing works
    # it's possible to have pickle errors
    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True,
                               transform=nni.trace(transforms.Compose)(
                                   [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
                               ))
    import nni.retiarii.evaluator.pytorch.lightning as pl
    dataloader = pl.DataLoader(dataset, batch_size=10, num_workers=2)
    x, y = next(iter(dataloader))
    assert x.size() == torch.Size([10, 1, 28, 28])
    assert y.size() == torch.Size([10])


211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def test_type():
    assert nni.dump(torch.optim.Adam) == '{"__nni_type__": "path:torch.optim.adam.Adam"}'
    assert nni.load('{"__nni_type__": "path:torch.optim.adam.Adam"}') == torch.optim.Adam
    assert Foo == nni.load(nni.dump(Foo))
    assert nni.dump(math.floor) == '{"__nni_type__": "path:math.floor"}'
    assert nni.load('{"__nni_type__": "path:math.floor"}') == math.floor


def test_lightning_earlystop():
    import nni.retiarii.evaluator.pytorch.lightning as pl
    from pytorch_lightning.callbacks.early_stopping import EarlyStopping
    trainer = pl.Trainer(callbacks=[nni.trace(EarlyStopping)(monitor="val_loss")])
    trainer = nni.load(nni.dump(trainer))
    assert any(isinstance(callback, EarlyStopping) for callback in trainer.callbacks)


227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def test_generator():
    import torch.nn as nn
    import torch.optim as optim

    class Net(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 10, 1)

        def forward(self, x):
            return self.conv(x)

    model = Net()
    optimizer = nni.trace(optim.Adam)(model.parameters())
    print(optimizer.trace_kwargs)


244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
def test_arguments_kind():
    def foo(a, b, *c, **d):
        pass

    d = nni.trace(foo)(1, 2, 3, 4)
    assert d.trace_args == [1, 2, 3, 4]
    assert d.trace_kwargs == {}

    d = nni.trace(foo)(a=1, b=2)
    assert d.trace_kwargs == dict(a=1, b=2)

    d = nni.trace(foo)(1, b=2)
    # this is not perfect, but it's safe
    assert d.trace_kwargs == dict(a=1, b=2)

    def foo(a, *, b=3, c=5):
        pass

    d = nni.trace(foo)(1, b=2, c=3)
    assert d.trace_kwargs == dict(a=1, b=2, c=3)

    import torch.nn as nn
    lstm = nni.trace(nn.LSTM)(2, 2)
    assert lstm.input_size == 2
    assert lstm.hidden_size == 2
    assert lstm.trace_args == [2, 2]

    lstm = nni.trace(nn.LSTM)(input_size=2, hidden_size=2)
    assert lstm.trace_kwargs == {'input_size': 2, 'hidden_size': 2}

274

275
if __name__ == '__main__':
276
277
278
279
280
    # test_simple_class()
    # test_external_class()
    # test_nested_class()
    # test_unserializable()
    # test_basic_unit()
281
282
    # test_generator()
    test_arguments_kind()