BenchmarksExample.ipynb 23.4 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Example Usages of NAS Benchmarks"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pprint\n",
    "import time\n",
    "\n",
    "from nni.nas.benchmarks.nasbench101 import query_nb101_trial_stats\n",
    "from nni.nas.benchmarks.nasbench201 import query_nb201_trial_stats\n",
    "from nni.nas.benchmarks.nds import query_nds_trial_stats\n",
    "\n",
    "ti = time.time()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## NAS-Bench-101"
   ]
  },
33
34
35
36
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
37
38
    "Use the following architecture as an example:\n",
    "\n",
39
40
41
    "![nas-101](../../img/nas-bench-101-example.png)"
   ]
  },
Yuge Zhang's avatar
Yuge Zhang committed
42
43
44
  {
   "cell_type": "code",
   "execution_count": 2,
45
46
47
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
48
49
50
51
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
52
     "text": "{'config': {'arch': {'input1': [0],\n                     'input2': [1],\n                     'input3': [2],\n                     'input4': [0],\n                     'input5': [0, 3, 4],\n                     'input6': [2, 5],\n                     'op1': 'conv3x3-bn-relu',\n                     'op2': 'maxpool3x3',\n                     'op3': 'conv3x3-bn-relu',\n                     'op4': 'conv3x3-bn-relu',\n                     'op5': 'conv1x1-bn-relu'},\n            'hash': '00005c142e6f48ac74fdcf73e3439874',\n            'id': 4,\n            'num_epochs': 108,\n            'num_vertices': 7},\n 'id': 10,\n 'intermediates': [{'current_epoch': 54,\n                    'id': 19,\n                    'test_acc': 77.40384340286255,\n                    'train_acc': 82.82251358032227,\n                    'training_time': 883.4580078125,\n                    'valid_acc': 77.76442170143127},\n                   {'current_epoch': 108,\n                    'id': 20,\n                    'test_acc': 92.11738705635071,\n                    'train_acc': 100.0,\n                    'training_time': 1769.1279296875,\n                    'valid_acc': 92.41786599159241}],\n 'parameters': 8.55553,\n 'test_acc': 92.11738705635071,\n 'train_acc': 100.0,\n 'training_time': 106147.67578125,\n 'valid_acc': 92.41786599159241}\n{'config': {'arch': {'input1': [0],\n                     'input2': [1],\n                     'input3': [2],\n                     'input4': [0],\n                     'input5': [0, 3, 4],\n                     'input6': [2, 5],\n                     'op1': 'conv3x3-bn-relu',\n                     'op2': 'maxpool3x3',\n                     'op3': 'conv3x3-bn-relu',\n                     'op4': 'conv3x3-bn-relu',\n                     'op5': 'conv1x1-bn-relu'},\n            'hash': '00005c142e6f48ac74fdcf73e3439874',\n            'id': 4,\n            'num_epochs': 108,\n            'num_vertices': 7},\n 'id': 11,\n 'intermediates': [{'current_epoch': 54,\n                    'id': 21,\n                    'test_acc': 82.04126358032227,\n                    'train_acc': 87.96073794364929,\n                    'training_time': 883.6810302734375,\n                    'valid_acc': 82.91265964508057},\n                   {'current_epoch': 108,\n                    'id': 22,\n                    'test_acc': 91.90705418586731,\n                    'train_acc': 100.0,\n                    'training_time': 1768.2509765625,\n                    'valid_acc': 92.45793223381042}],\n 'parameters': 8.55553,\n 'test_acc': 91.90705418586731,\n 'train_acc': 100.0,\n 'training_time': 106095.05859375,\n 'valid_acc': 92.45793223381042}\n{'config': {'arch': {'input1': [0],\n                     'input2': [1],\n                     'input3': [2],\n                     'input4': [0],\n                     'input5': [0, 3, 4],\n                     'input6': [2, 5],\n                     'op1': 'conv3x3-bn-relu',\n                     'op2': 'maxpool3x3',\n                     'op3': 'conv3x3-bn-relu',\n                     'op4': 'conv3x3-bn-relu',\n                     'op5': 'conv1x1-bn-relu'},\n            'hash': '00005c142e6f48ac74fdcf73e3439874',\n            'id': 4,\n            'num_epochs': 108,\n            'num_vertices': 7},\n 'id': 12,\n 'intermediates': [{'current_epoch': 54,\n                    'id': 23,\n                    'test_acc': 80.58894276618958,\n                    'train_acc': 86.34815812110901,\n                    'training_time': 883.4569702148438,\n                    'valid_acc': 81.1598539352417},\n                   {'current_epoch': 108,\n                    'id': 24,\n                    'test_acc': 92.15745329856873,\n                    'train_acc': 100.0,\n                    'training_time': 1768.9759521484375,\n                    'valid_acc': 93.04887652397156}],\n 'parameters': 8.55553,\n 'test_acc': 92.15745329856873,\n 'train_acc': 100.0,\n 'training_time': 106138.55712890625,\n 'valid_acc': 93.04887652397156}\n"
Yuge Zhang's avatar
Yuge Zhang committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    }
   ],
   "source": [
    "arch = {\n",
    "    'op1': 'conv3x3-bn-relu',\n",
    "    'op2': 'maxpool3x3',\n",
    "    'op3': 'conv3x3-bn-relu',\n",
    "    'op4': 'conv3x3-bn-relu',\n",
    "    'op5': 'conv1x1-bn-relu',\n",
    "    'input1': [0],\n",
    "    'input2': [1],\n",
    "    'input3': [2],\n",
    "    'input4': [0],\n",
    "    'input5': [0, 3, 4],\n",
    "    'input6': [2, 5]\n",
    "}\n",
69
    "for t in query_nb101_trial_stats(arch, 108, include_intermediates=True):\n",
Yuge Zhang's avatar
Yuge Zhang committed
70
71
72
    "    pprint.pprint(t)"
   ]
  },
73
74
75
76
77
78
79
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An architecture of NAS-Bench-101 could be trained more than once. Each element of the returned generator is a dict which contains one of the training results of this trial config (architecture + hyper-parameters) including train/valid/test accuracy, training time, number of epochs, etc. The results of NAS-Bench-201 and NDS follow similar formats."
   ]
  },
Yuge Zhang's avatar
Yuge Zhang committed
80
81
82
83
84
85
86
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## NAS-Bench-201"
   ]
  },
87
88
89
90
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
91
92
    "Use the following architecture as an example:\n",
    "\n",
93
94
95
    "![nas-201](../../img/nas-bench-201-example.png)"
   ]
  },
Yuge Zhang's avatar
Yuge Zhang committed
96
97
98
  {
   "cell_type": "code",
   "execution_count": 3,
99
100
101
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "{'config': {'arch': {'0_1': 'avg_pool_3x3',\n                     '0_2': 'conv_1x1',\n                     '0_3': 'conv_1x1',\n                     '1_2': 'skip_connect',\n                     '1_3': 'skip_connect',\n                     '2_3': 'skip_connect'},\n            'dataset': 'cifar100',\n            'id': 7,\n            'num_cells': 5,\n            'num_channels': 16,\n            'num_epochs': 200},\n 'flops': 15.65322,\n 'id': 3,\n 'latency': 0.013182918230692545,\n 'ori_test_acc': 53.11,\n 'ori_test_evaluation_time': 1.0195916947864352,\n 'ori_test_loss': 1.7307863704681397,\n 'parameters': 0.135156,\n 'seed': 999,\n 'test_acc': 53.07999995727539,\n 'test_evaluation_time': 0.5097958473932176,\n 'test_loss': 1.731276072692871,\n 'train_acc': 57.82,\n 'train_loss': 1.5116578379058838,\n 'training_time': 2888.4371995925903,\n 'valid_acc': 53.14000000610351,\n 'valid_evaluation_time': 0.5097958473932176,\n 'valid_loss': 1.7302966793060304}\n{'config': {'arch': {'0_1': 'avg_pool_3x3',\n                     '0_2': 'conv_1x1',\n                     '0_3': 'conv_1x1',\n                     '1_2': 'skip_connect',\n                     '1_3': 'skip_connect',\n                     '2_3': 'skip_connect'},\n            'dataset': 'cifar100',\n            'id': 7,\n            'num_cells': 5,\n            'num_channels': 16,\n            'num_epochs': 200},\n 'flops': 15.65322,\n 'id': 7,\n 'latency': 0.013182918230692545,\n 'ori_test_acc': 51.93,\n 'ori_test_evaluation_time': 1.0195916947864352,\n 'ori_test_loss': 1.7572312774658203,\n 'parameters': 0.135156,\n 'seed': 777,\n 'test_acc': 51.979999938964845,\n 'test_evaluation_time': 0.5097958473932176,\n 'test_loss': 1.7429540189743042,\n 'train_acc': 57.578,\n 'train_loss': 1.5114233912658692,\n 'training_time': 2888.4371995925903,\n 'valid_acc': 51.88,\n 'valid_evaluation_time': 0.5097958473932176,\n 'valid_loss': 1.7715086591720581}\n{'config': {'arch': {'0_1': 'avg_pool_3x3',\n                     '0_2': 'conv_1x1',\n                     '0_3': 'conv_1x1',\n                     '1_2': 'skip_connect',\n                     '1_3': 'skip_connect',\n                     '2_3': 'skip_connect'},\n            'dataset': 'cifar100',\n            'id': 7,\n            'num_cells': 5,\n            'num_channels': 16,\n            'num_epochs': 200},\n 'flops': 15.65322,\n 'id': 11,\n 'latency': 0.013182918230692545,\n 'ori_test_acc': 53.38,\n 'ori_test_evaluation_time': 1.0195916947864352,\n 'ori_test_loss': 1.7281623031616211,\n 'parameters': 0.135156,\n 'seed': 888,\n 'test_acc': 53.67999998779297,\n 'test_evaluation_time': 0.5097958473932176,\n 'test_loss': 1.7327697801589965,\n 'train_acc': 57.792,\n 'train_loss': 1.5091403088760376,\n 'training_time': 2888.4371995925903,\n 'valid_acc': 53.08000000610352,\n 'valid_evaluation_time': 0.5097958473932176,\n 'valid_loss': 1.7235548280715942}\n"
    }
   ],
   "source": [
    "arch = {\n",
    "    '0_1': 'avg_pool_3x3',\n",
    "    '0_2': 'conv_1x1',\n",
    "    '1_2': 'skip_connect',\n",
    "    '0_3': 'conv_1x1',\n",
    "    '1_3': 'skip_connect',\n",
    "    '2_3': 'skip_connect'\n",
    "}\n",
    "for t in query_nb201_trial_stats(arch, 200, 'cifar100'):\n",
    "    pprint.pprint(t)"
   ]
  },
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Intermediate results are also available."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "{'id': 4, 'arch': {'0_1': 'avg_pool_3x3', '0_2': 'conv_1x1', '0_3': 'conv_1x1', '1_2': 'skip_connect', '1_3': 'skip_connect', '2_3': 'skip_connect'}, 'num_epochs': 12, 'num_channels': 16, 'num_cells': 5, 'dataset': 'imagenet16-120'}\nIntermediates: 12\n{'id': 8, 'arch': {'0_1': 'avg_pool_3x3', '0_2': 'conv_1x1', '0_3': 'conv_1x1', '1_2': 'skip_connect', '1_3': 'skip_connect', '2_3': 'skip_connect'}, 'num_epochs': 200, 'num_channels': 16, 'num_cells': 5, 'dataset': 'imagenet16-120'}\nIntermediates: 200\n{'id': 8, 'arch': {'0_1': 'avg_pool_3x3', '0_2': 'conv_1x1', '0_3': 'conv_1x1', '1_2': 'skip_connect', '1_3': 'skip_connect', '2_3': 'skip_connect'}, 'num_epochs': 200, 'num_channels': 16, 'num_cells': 5, 'dataset': 'imagenet16-120'}\nIntermediates: 200\n{'id': 8, 'arch': {'0_1': 'avg_pool_3x3', '0_2': 'conv_1x1', '0_3': 'conv_1x1', '1_2': 'skip_connect', '1_3': 'skip_connect', '2_3': 'skip_connect'}, 'num_epochs': 200, 'num_channels': 16, 'num_cells': 5, 'dataset': 'imagenet16-120'}\nIntermediates: 200\n"
    }
   ],
   "source": [
    "for t in query_nb201_trial_stats(arch, None, 'imagenet16-120', include_intermediates=True):\n",
    "    print(t['config'])\n",
    "    print('Intermediates:', len(t['intermediates']))"
   ]
  },
Yuge Zhang's avatar
Yuge Zhang committed
148
149
150
151
152
153
154
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## NDS"
   ]
  },
155
156
157
158
159
160
161
162
163
164
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Use the following architecture as an example:<br>\n",
    "![nds](../../img/nas-bench-nds-example.png)\n",
    "\n",
    "Here, `bot_muls`, `ds`, `num_gs`, `ss` and `ws` stand for \"bottleneck multipliers\", \"depths\", \"number of groups\", \"strides\" and \"widths\" respectively."
   ]
  },
Yuge Zhang's avatar
Yuge Zhang committed
165
166
  {
   "cell_type": "code",
167
168
169
170
   "execution_count": 5,
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "{'best_test_acc': 90.48,\n 'best_train_acc': 96.356,\n 'best_train_loss': 0.116,\n 'config': {'base_lr': 0.1,\n            'cell_spec': {},\n            'dataset': 'cifar10',\n            'generator': 'random',\n            'id': 45505,\n            'model_family': 'residual_bottleneck',\n            'model_spec': {'bot_muls': [0.0, 0.25, 0.25, 0.25],\n                           'ds': [1, 16, 1, 4],\n                           'num_gs': [1, 2, 1, 2],\n                           'ss': [1, 1, 2, 2],\n                           'ws': [16, 64, 128, 16]},\n            'num_epochs': 100,\n            'proposer': 'resnext-a',\n            'weight_decay': 0.0005},\n 'final_test_acc': 90.39,\n 'final_train_acc': 96.298,\n 'final_train_loss': 0.116,\n 'flops': 69.890986,\n 'id': 45505,\n 'iter_time': 0.065,\n 'parameters': 0.083002,\n 'seed': 1}\n"
    }
   ],
   "source": [
    "model_spec = {\n",
    "    'bot_muls': [0.0, 0.25, 0.25, 0.25],\n",
    "    'ds': [1, 16, 1, 4],\n",
    "    'num_gs': [1, 2, 1, 2],\n",
    "    'ss': [1, 1, 2, 2],\n",
    "    'ws': [16, 64, 128, 16]\n",
    "}\n",
    "# Use none as a wildcard\n",
    "for t in query_nds_trial_stats('residual_bottleneck', None, None, model_spec, None, 'cifar10'):\n",
    "    pprint.pprint(t)"
   ]
  },
  {
   "cell_type": "code",
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
   "execution_count": 6,
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "[{'current_epoch': 1,\n  'id': 4494501,\n  'test_acc': 41.76,\n  'train_acc': 30.421000000000006,\n  'train_loss': 1.793},\n {'current_epoch': 2,\n  'id': 4494502,\n  'test_acc': 54.66,\n  'train_acc': 47.24,\n  'train_loss': 1.415},\n {'current_epoch': 3,\n  'id': 4494503,\n  'test_acc': 59.97,\n  'train_acc': 56.983,\n  'train_loss': 1.179},\n {'current_epoch': 4,\n  'id': 4494504,\n  'test_acc': 62.91,\n  'train_acc': 61.955,\n  'train_loss': 1.048},\n {'current_epoch': 5,\n  'id': 4494505,\n  'test_acc': 66.16,\n  'train_acc': 64.493,\n  'train_loss': 0.983},\n {'current_epoch': 6,\n  'id': 4494506,\n  'test_acc': 66.5,\n  'train_acc': 66.274,\n  'train_loss': 0.937},\n {'current_epoch': 7,\n  'id': 4494507,\n  'test_acc': 67.55,\n  'train_acc': 67.426,\n  'train_loss': 0.907},\n {'current_epoch': 8,\n  'id': 4494508,\n  'test_acc': 69.45,\n  'train_acc': 68.45400000000001,\n  'train_loss': 0.878},\n {'current_epoch': 9,\n  'id': 4494509,\n  'test_acc': 70.14,\n  'train_acc': 69.295,\n  'train_loss': 0.857},\n {'current_epoch': 10,\n  'id': 4494510,\n  'test_acc': 69.47,\n  'train_acc': 70.304,\n  'train_loss': 0.832}]\n"
    }
   ],
   "source": [
    "model_spec = {\n",
    "    'bot_muls': [0.0, 0.25, 0.25, 0.25],\n",
    "    'ds': [1, 16, 1, 4],\n",
    "    'num_gs': [1, 2, 1, 2],\n",
    "    'ss': [1, 1, 2, 2],\n",
    "    'ws': [16, 64, 128, 16]\n",
    "}\n",
    "for t in query_nds_trial_stats('residual_bottleneck', None, None, model_spec, None, 'cifar10', include_intermediates=True):\n",
    "    pprint.pprint(t['intermediates'][:10])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "{'best_test_acc': 93.58,\n 'best_train_acc': 99.772,\n 'best_train_loss': 0.011,\n 'config': {'base_lr': 0.1,\n            'cell_spec': {},\n            'dataset': 'cifar10',\n            'generator': 'random',\n            'id': 108998,\n            'model_family': 'residual_basic',\n            'model_spec': {'ds': [1, 12, 12, 12],\n                           'ss': [1, 1, 2, 2],\n                           'ws': [16, 24, 24, 40]},\n            'num_epochs': 100,\n            'proposer': 'resnet',\n            'weight_decay': 0.0005},\n 'final_test_acc': 93.49,\n 'final_train_acc': 99.772,\n 'final_train_loss': 0.011,\n 'flops': 184.519578,\n 'id': 108998,\n 'iter_time': 0.059,\n 'parameters': 0.594138,\n 'seed': 1}\n"
    }
   ],
   "source": [
    "model_spec = {'ds': [1, 12, 12, 12], 'ss': [1, 1, 2, 2], 'ws': [16, 24, 24, 40]}\n",
    "for t in query_nds_trial_stats('residual_basic', 'resnet', 'random', model_spec, {}, 'cifar10'):\n",
    "    pprint.pprint(t)"
   ]
  },
  {
   "cell_type": "code",
237
238
239
240
   "execution_count": 8,
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "{'best_test_acc': 84.5,\n 'best_train_acc': 89.66499999999999,\n 'best_train_loss': 0.302,\n 'config': {'base_lr': 0.1,\n            'cell_spec': {},\n            'dataset': 'cifar10',\n            'generator': 'random',\n            'id': 139492,\n            'model_family': 'vanilla',\n            'model_spec': {'ds': [1, 12, 12, 12],\n                           'ss': [1, 1, 2, 2],\n                           'ws': [16, 24, 32, 40]},\n            'num_epochs': 100,\n            'proposer': 'vanilla',\n            'weight_decay': 0.0005},\n 'final_test_acc': 84.35,\n 'final_train_acc': 89.633,\n 'final_train_loss': 0.303,\n 'flops': 208.36393,\n 'id': 154692,\n 'iter_time': 0.058,\n 'parameters': 0.68977,\n 'seed': 1}\n"
    }
   ],
   "source": [
    "# get the first one\n",
    "pprint.pprint(next(query_nds_trial_stats('vanilla', None, None, None, None, None)))"
   ]
  },
  {
   "cell_type": "code",
255
256
257
258
   "execution_count": 9,
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "{'best_test_acc': 93.37,\n 'best_train_acc': 99.91,\n 'best_train_loss': 0.006,\n 'config': {'base_lr': 0.1,\n            'cell_spec': {'normal_0_input_x': 0,\n                          'normal_0_input_y': 1,\n                          'normal_0_op_x': 'avg_pool_3x3',\n                          'normal_0_op_y': 'conv_7x1_1x7',\n                          'normal_1_input_x': 2,\n                          'normal_1_input_y': 0,\n                          'normal_1_op_x': 'sep_conv_3x3',\n                          'normal_1_op_y': 'sep_conv_5x5',\n                          'normal_2_input_x': 2,\n                          'normal_2_input_y': 2,\n                          'normal_2_op_x': 'dil_sep_conv_3x3',\n                          'normal_2_op_y': 'dil_sep_conv_3x3',\n                          'normal_3_input_x': 4,\n                          'normal_3_input_y': 4,\n                          'normal_3_op_x': 'skip_connect',\n                          'normal_3_op_y': 'dil_sep_conv_3x3',\n                          'normal_4_input_x': 2,\n                          'normal_4_input_y': 4,\n                          'normal_4_op_x': 'conv_7x1_1x7',\n                          'normal_4_op_y': 'sep_conv_3x3',\n                          'normal_concat': [3, 5, 6],\n                          'reduce_0_input_x': 0,\n                          'reduce_0_input_y': 1,\n                          'reduce_0_op_x': 'avg_pool_3x3',\n                          'reduce_0_op_y': 'dil_sep_conv_3x3',\n                          'reduce_1_input_x': 0,\n                          'reduce_1_input_y': 0,\n                          'reduce_1_op_x': 'sep_conv_3x3',\n                          'reduce_1_op_y': 'sep_conv_3x3',\n                          'reduce_2_input_x': 2,\n                          'reduce_2_input_y': 0,\n                          'reduce_2_op_x': 'skip_connect',\n                          'reduce_2_op_y': 'sep_conv_7x7',\n                          'reduce_3_input_x': 4,\n                          'reduce_3_input_y': 4,\n                          'reduce_3_op_x': 'conv_7x1_1x7',\n                          'reduce_3_op_y': 'skip_connect',\n                          'reduce_4_input_x': 0,\n                          'reduce_4_input_y': 5,\n                          'reduce_4_op_x': 'conv_7x1_1x7',\n                          'reduce_4_op_y': 'conv_7x1_1x7',\n                          'reduce_concat': [3, 6]},\n            'dataset': 'cifar10',\n            'generator': 'random',\n            'id': 1,\n            'model_family': 'nas_cell',\n            'model_spec': {'aux': False,\n                           'depth': 12,\n                           'drop_prob': 0.0,\n                           'num_nodes_normal': 5,\n                           'num_nodes_reduce': 5,\n                           'width': 32},\n            'num_epochs': 100,\n            'proposer': 'amoeba',\n            'weight_decay': 0.0005},\n 'final_test_acc': 93.27,\n 'final_train_acc': 99.91,\n 'final_train_loss': 0.006,\n 'flops': 664.400586,\n 'id': 1,\n 'iter_time': 0.281,\n 'parameters': 4.190314,\n 'seed': 1}\n"
    }
   ],
   "source": [
    "# count number\n",
    "model_spec = {'num_nodes_normal': 5, 'num_nodes_reduce': 5, 'depth': 12, 'width': 32, 'aux': False, 'drop_prob': 0.0}\n",
    "cell_spec = {\n",
    "    'normal_0_op_x': 'avg_pool_3x3',\n",
    "    'normal_0_input_x': 0,\n",
    "    'normal_0_op_y': 'conv_7x1_1x7',\n",
    "    'normal_0_input_y': 1,\n",
    "    'normal_1_op_x': 'sep_conv_3x3',\n",
    "    'normal_1_input_x': 2,\n",
    "    'normal_1_op_y': 'sep_conv_5x5',\n",
    "    'normal_1_input_y': 0,\n",
    "    'normal_2_op_x': 'dil_sep_conv_3x3',\n",
    "    'normal_2_input_x': 2,\n",
    "    'normal_2_op_y': 'dil_sep_conv_3x3',\n",
    "    'normal_2_input_y': 2,\n",
    "    'normal_3_op_x': 'skip_connect',\n",
    "    'normal_3_input_x': 4,\n",
    "    'normal_3_op_y': 'dil_sep_conv_3x3',\n",
    "    'normal_3_input_y': 4,\n",
    "    'normal_4_op_x': 'conv_7x1_1x7',\n",
    "    'normal_4_input_x': 2,\n",
    "    'normal_4_op_y': 'sep_conv_3x3',\n",
    "    'normal_4_input_y': 4,\n",
    "    'normal_concat': [3, 5, 6],\n",
    "    'reduce_0_op_x': 'avg_pool_3x3',\n",
    "    'reduce_0_input_x': 0,\n",
    "    'reduce_0_op_y': 'dil_sep_conv_3x3',\n",
    "    'reduce_0_input_y': 1,\n",
    "    'reduce_1_op_x': 'sep_conv_3x3',\n",
    "    'reduce_1_input_x': 0,\n",
    "    'reduce_1_op_y': 'sep_conv_3x3',\n",
    "    'reduce_1_input_y': 0,\n",
    "    'reduce_2_op_x': 'skip_connect',\n",
    "    'reduce_2_input_x': 2,\n",
    "    'reduce_2_op_y': 'sep_conv_7x7',\n",
    "    'reduce_2_input_y': 0,\n",
    "    'reduce_3_op_x': 'conv_7x1_1x7',\n",
    "    'reduce_3_input_x': 4,\n",
    "    'reduce_3_op_y': 'skip_connect',\n",
    "    'reduce_3_input_y': 4,\n",
    "    'reduce_4_op_x': 'conv_7x1_1x7',\n",
    "    'reduce_4_input_x': 0,\n",
    "    'reduce_4_op_y': 'conv_7x1_1x7',\n",
    "    'reduce_4_input_y': 5,\n",
    "    'reduce_concat': [3, 6]\n",
    "}\n",
    "\n",
    "for t in query_nds_trial_stats('nas_cell', None, None, model_spec, cell_spec, 'cifar10'):\n",
    "    assert t['config']['model_spec'] == model_spec\n",
    "    assert t['config']['cell_spec'] == cell_spec\n",
    "    pprint.pprint(t)"
   ]
  },
  {
   "cell_type": "code",
322
323
324
325
   "execution_count": 10,
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
     "text": "NDS (amoeba) count: 5107\n"
    }
   ],
   "source": [
    "# count number\n",
    "print('NDS (amoeba) count:', len(list(query_nds_trial_stats(None, 'amoeba', None, None, None, None, None))))"
   ]
  },
  {
   "cell_type": "code",
340
341
342
343
   "execution_count": 11,
   "metadata": {
    "tags": []
   },
Yuge Zhang's avatar
Yuge Zhang committed
344
345
346
347
   "outputs": [
    {
     "output_type": "stream",
     "name": "stdout",
348
     "text": "Elapsed time:  2.2023813724517822 seconds\n"
Yuge Zhang's avatar
Yuge Zhang committed
349
350
351
352
353
354
    }
   ],
   "source": [
    "print('Elapsed time: ', time.time() - ti, 'seconds')"
   ]
  }
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
 ],
 "metadata": {
  "language_info": {
   "name": "python",
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "version": "3.6.10-final"
  },
  "orig_nbformat": 2,
  "file_extension": ".py",
  "mimetype": "text/x-python",
  "name": "python",
  "npconvert_exporter": "python",
  "pygments_lexer": "ipython3",
  "version": 3,
  "kernelspec": {
   "name": "python361064bitnnilatestcondabff8d66a619a4d26af34fe0fe687c7b0",
   "display_name": "Python 3.6.10 64-bit ('nnilatest': conda)"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
Yuge Zhang's avatar
Yuge Zhang committed
379
}