scheduler_torch.py 3.67 KB
Newer Older
1
import sys
2
3
4
5
6
7
8
9
10
from tqdm import tqdm

import torch
from torchvision import datasets, transforms

from nni.algorithms.compression.v2.pytorch.pruning import L1NormPruner
from nni.algorithms.compression.v2.pytorch.pruning.tools import AGPTaskGenerator
from nni.algorithms.compression.v2.pytorch.pruning.basic_scheduler import PruningScheduler

11
12
sys.path.append('../../models')
from cifar10.vgg import VGG
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=True, transform=transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ]), download=True),
    batch_size=128, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=128, shuffle=False)
criterion = torch.nn.CrossEntropyLoss()

def trainer(model, optimizer, criterion, epoch):
    model.train()
    for data, target in tqdm(iterable=train_loader, desc='Epoch {}'.format(epoch)):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def finetuner(model):
    model.train()
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    criterion = torch.nn.CrossEntropyLoss()
    for data, target in tqdm(iterable=train_loader, desc='Epoch PFs'):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

def evaluator(model):
    model.eval()
    correct = 0
    with torch.no_grad():
        for data, target in tqdm(iterable=test_loader, desc='Test'):
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    acc = 100 * correct / len(test_loader.dataset)
    print('Accuracy: {}%\n'.format(acc))
    return acc


if __name__ == '__main__':
    model = VGG().to(device)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
    criterion = torch.nn.CrossEntropyLoss()

    # pre-train the model
    for i in range(5):
        trainer(model, optimizer, criterion, i)

81
82
    # No need to pass model and config_list to pruner during initializing when using scheduler.
    pruner = L1NormPruner(None, None)
83
84
85

    # you can specify the log_dir, all intermediate results and best result will save under this folder.
    # if you don't want to keep intermediate results, you can set `keep_intermediate_result=False`.
86
    config_list = [{'op_types': ['Conv2d'], 'sparsity': 0.8}]
87
88
89
90
91
92
93
94
95
96
97
    task_generator = AGPTaskGenerator(10, model, config_list, log_dir='.', keep_intermediate_result=True)

    dummy_input = torch.rand(10, 3, 32, 32).to(device)

    # if you just want to keep the final result as the best result, you can pass evaluator as None.
    # or the result with the highest score (given by evaluator) will be the best result.

    # scheduler = PruningScheduler(pruner, task_generator, finetuner=finetuner, speed_up=True, dummy_input=dummy_input, evaluator=evaluator)
    scheduler = PruningScheduler(pruner, task_generator, finetuner=finetuner, speed_up=True, dummy_input=dummy_input, evaluator=None)

    scheduler.compress()