network.py 6.15 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import pickle
import re

import torch
import torch.nn as nn
from nni.nas.pytorch import mutables

from blocks import ShuffleNetBlock, ShuffleXceptionBlock


class ShuffleNetV2OneShot(nn.Module):
    block_keys = [
        'shufflenet_3x3',
        'shufflenet_5x5',
        'shufflenet_7x7',
        'xception_3x3',
    ]

    def __init__(self, input_size=224, first_conv_channels=16, last_conv_channels=1024, n_classes=1000,
                 op_flops_path="./data/op_flops_dict.pkl"):
        super().__init__()

        assert input_size % 32 == 0
        with open(os.path.join(os.path.dirname(__file__), op_flops_path), "rb") as fp:
            self._op_flops_dict = pickle.load(fp)

        self.stage_blocks = [4, 4, 8, 4]
        self.stage_channels = [64, 160, 320, 640]
        self._parsed_flops = dict()
        self._input_size = input_size
        self._feature_map_size = input_size
        self._first_conv_channels = first_conv_channels
        self._last_conv_channels = last_conv_channels
        self._n_classes = n_classes

        # building first layer
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, first_conv_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(first_conv_channels, affine=False),
            nn.ReLU(inplace=True),
        )
        self._feature_map_size //= 2

        p_channels = first_conv_channels
        features = []
        for num_blocks, channels in zip(self.stage_blocks, self.stage_channels):
            features.extend(self._make_blocks(num_blocks, p_channels, channels))
            p_channels = channels
        self.features = nn.Sequential(*features)

        self.conv_last = nn.Sequential(
            nn.Conv2d(p_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=False),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AvgPool2d(self._feature_map_size)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, n_classes, bias=False),
        )

        self._initialize_weights()

    def _make_blocks(self, blocks, in_channels, channels):
        result = []
        for i in range(blocks):
            stride = 2 if i == 0 else 1
            inp = in_channels if i == 0 else channels
            oup = channels

            base_mid_channels = channels // 2
            mid_channels = int(base_mid_channels)  # prepare for scale
            choice_block = mutables.LayerChoice([
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=3, stride=stride),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=5, stride=stride),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=7, stride=stride),
                ShuffleXceptionBlock(inp, oup, mid_channels=mid_channels, stride=stride)
            ])
            result.append(choice_block)

            # find the corresponding flops
            flop_key = (inp, oup, mid_channels, self._feature_map_size, self._feature_map_size, stride)
            self._parsed_flops[choice_block.key] = [
                self._op_flops_dict["{}_stride_{}".format(k, stride)][flop_key] for k in self.block_keys
            ]
            if stride == 2:
                self._feature_map_size //= 2
        return result

    def forward(self, x):
        bs = x.size(0)
        x = self.first_conv(x)
        x = self.features(x)
        x = self.conv_last(x)
        x = self.globalpool(x)

        x = self.dropout(x)
        x = x.contiguous().view(bs, -1)
        x = self.classifier(x)
        return x

    def get_candidate_flops(self, candidate):
        conv1_flops = self._op_flops_dict["conv1"][(3, self._first_conv_channels,
                                                    self._input_size, self._input_size, 2)]
        # Should use `last_conv_channels` here, but megvii insists that it's `n_classes`. Keeping it.
        # https://github.com/megvii-model/SinglePathOneShot/blob/36eed6cf083497ffa9cfe7b8da25bb0b6ba5a452/src/Supernet/flops.py#L313
        rest_flops = self._op_flops_dict["rest_operation"][(self.stage_channels[-1], self._n_classes,
                                                            self._feature_map_size, self._feature_map_size, 1)]
        total_flops = conv1_flops + rest_flops
        for k, m in candidate.items():
            parsed_flops_dict = self._parsed_flops[k]
            if isinstance(m, dict):  # to be compatible with classical nas format
                total_flops += parsed_flops_dict[m["_idx"]]
            else:
                total_flops += parsed_flops_dict[torch.max(m, 0)[1]]
        return total_flops

    def _initialize_weights(self):
        for name, m in self.named_modules():
            if isinstance(m, nn.Conv2d):
                if 'first' in name:
                    nn.init.normal_(m.weight, 0, 0.01)
                else:
                    nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0.0001)
                nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.BatchNorm1d):
                nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0.0001)
                nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)


def load_and_parse_state_dict(filepath="./data/checkpoint-150000.pth.tar"):
    checkpoint = torch.load(filepath, map_location=torch.device("cpu"))
    result = dict()
    for k, v in checkpoint["state_dict"].items():
        if k.startswith("module."):
            k = k[len("module."):]
        k = re.sub(r"^(features.\d+).(\d+)", "\\1.choices.\\2", k)
        result[k] = v
    return result