opevo.py 14.6 KB
Newer Older
gxiaotian's avatar
gxiaotian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import math
import logging
import copy
import random
import numpy as np
from itertools import permutations, combinations

import nni
from nni.tuner import Tuner


class Parameter(object):
    """Base class for all types of parameters
    """
    def mutate(self):
        raise NotImplementedError

    def reset(self):
        raise NotImplementedError

    def pick_out(self):
        raise NotImplementedError

    def get_cardinality(self):
        raise NotImplementedError

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False


class Choice(Parameter):
    """choice type parameter
    """
    def __init__(self, choices, mutate_rate):
        self.choices = choices
        self.value = random.choice(self.choices)
        self.mutate_rate = mutate_rate

    def get_cardinality(self):
        return len(self.choices)

    def reset(self):
        self.value = random.choice(self.choices)

    def mutate(self):
        child = copy.deepcopy(self)
        while random.uniform(0, 1) < child.mutate_rate:
            choices = copy.deepcopy(child.choices)
            choices.remove(child.value)
            if choices:
                child.value = random.choice(choices)
            else:
                break

        return child

    def pick_out(self):
        return self.value


class Discrete(Parameter):
    """choice type parameter
    """
    def __init__(self, numbers, mutate_rate):
        numbers.sort()
        self.numbers = numbers
        self.value = random.choice(self.numbers)
        self.mutate_rate = mutate_rate

    def get_cardinality(self):
        return len(self.numbers)

    def reset(self):
        self.value = random.choice(self.numbers)

    def mutate(self):
        child = copy.deepcopy(self)
        while random.uniform(0, 1) < child.mutate_rate:
            idx = child.numbers.index(child.value)
            if idx == 0 and idx + 1 < len(child.numbers):
                child.value = child.numbers[idx + 1]
            elif idx + 1 == len(child.numbers) and idx - 1 >= 0:
                child.value = child.numbers[idx - 1]
            elif idx == 0 and idx + 1 == len(child.numbers):
                break
            else:
                shift = random.choice([-1, 1])
                child.value = child.numbers[idx + shift]

        return child

    def pick_out(self):
        return self.value


class Factor(Parameter):
    """factor type parameter
    """
    def __init__(self, value, mutate_rate):
        self.product, self.num = value
        self.mutate_rate = mutate_rate
        self.all_partitions = self._get_all_partitions(self.product, self.num)
        self.partition = random.choice(self.all_partitions)

    def reset(self):
        self.partition = random.choice(self.all_partitions)

    def get_cardinality(self):
        return len(self.all_partitions)

    def mutate(self):
        child = copy.deepcopy(self)
        while random.uniform(0, 1) < self.mutate_rate:
            action = random.choice(child._get_actions())
            child._step(action)

        return child

    def pick_out(self):
        return self.partition

    def _step(self, action):
        self.partition[action[0]] = int(self.partition[action[0]] / action[2])
        self.partition[action[1]] = int(self.partition[action[1]] * action[2])

    def _get_actions(self):
        actions = []
        prime_factors = self._get_prime_factors(self.product, False)
        for i in range(self.num):
            for j in range(self.num):
                if i != j:
                    for k in range(len(prime_factors)):
                        action = [i]
                        action.append(j)
                        action.append(prime_factors[k])
                        if self.partition[action[0]] % action[2] == 0:
                            actions.append(action)
        return actions

    def __repr__(self):
        string = "["
        for factor in self.partition:
            string += factor.__repr__() + " "
        string = string[:-1] + "]"

        return string

    def _get_all_partitions(self, product, num):
        # get all prime factors with repetition
        prime_factors = self._get_prime_factors(product)

        # group all prime factors
        groups = {}
        for prime_factor in prime_factors:
            if prime_factor in groups.keys():
                groups[prime_factor] += 1
            else:
                groups[prime_factor] = 1

        # partition each group
        for key, value in groups.items():
            partitions = []
            for comb in combinations(range(value + num - 1), num - 1):
                # print(comb)
                partition = []
                start_idx = -1
                for idx in comb:
                    partition.append(key**(idx - start_idx - 1))
                    start_idx = idx
                partition.append(key**(value + num - 2 - start_idx))
                partitions.append(partition)
            groups[key] = partitions

        # generate partitions
        partitions = []

        def part(groups, mul=[]):
            if not groups:
                partition = [1] * num
                for i in range(num):
                    for m in mul:
                        partition[i] *= m[i]
                partitions.append(partition)

            for key, group in groups.items():
                for partition in group:
                    mul.append(partition)
                    tmp = copy.deepcopy(groups)
                    del tmp[key]
                    part(tmp, mul)
                    mul.pop()
                break

        part(groups)
        return partitions

    def _get_prime_factors(self, n, repeat=True):
        prime_factors = []

        while n % 2 == 0:
            if 2 not in prime_factors:
                prime_factors.append(2)
            elif repeat:
                prime_factors.append(2)
            n = n / 2

        for i in range(3, int(math.sqrt(n)) + 1, 2):
            while n % i == 0:
                if i not in prime_factors:
                    prime_factors.append(i)
                elif repeat:
                    prime_factors.append(i)
                n = n / i

        if n > 2:
            prime_factors.append(int(n))

        return prime_factors


class Individual(object):
    """Individual class
    """
    def __init__(self, search_space, mutate_rate):
        self.params = {}
        for key in search_space.keys():
            if search_space[key]['_type'] == 'choice':
                self.params[key] = \
                    Choice(search_space[key]['_value'], mutate_rate)
            elif search_space[key]['_type'] == 'discrete':
                self.params[key] = \
                    Discrete(search_space[key]['_value'], mutate_rate)
            elif search_space[key]['_type'] == 'factor':
                self.params[key] = \
                    Factor(search_space[key]['_value'], mutate_rate)
            else:
                raise RuntimeError(
                    "OpEvo Tuner doesn't support this kind of parameter: "
                    + str(search_space[key]['_type'])
                )

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

    def __repr__(self):
        string = ""
        for param in self.params:
            string += param.__repr__() + '\n'

        return string

    def mutate(self):
        child = copy.deepcopy(self)
        for key in child.params.keys():
            child.params[key] = child.params[key].mutate()

        return child

    def reset(self):
        for key in self.params.keys():
            self.params[key].reset()

        return self

    def pick_out(self):
        output = {}
        for key in self.params.keys():
            output[key] = self.params[key].pick_out()

        return output


class Population(object):
    """Population class
    """

    def __init__(self, search_space, mutate_rate, opt_mode='maximize'):
        self.search_space = search_space
        self.mutate_rate = mutate_rate
        self.opt_mode = opt_mode
        self.population = []
        self.fitness = []

        self.individual = Individual(self.search_space, self.mutate_rate)
        self.volume = 1
        for key, value in self.individual.params.items():
            self.volume *= self.individual.params[key].get_cardinality()

    def append(self, individual, fitness):
        if self.opt_mode == "minimize":
            fitness = -1 * fitness

        self.population.insert(0, individual)
        self.fitness.insert(0, fitness)

        i = 0
        while (i < len(self.fitness) - 1
                and self.fitness[i] < self.fitness[i + 1]):
            self.fitness[i], self.fitness[i + 1] = \
                self.fitness[i + 1], self.fitness[i]
            self.population[i], self.population[i + 1] = \
                self.population[i + 1], self.population[i]
            i += 1

    def get_offspring(self, parents_size, offspring_size):
        children = []
        if len(self.fitness) < parents_size:
            for _ in range(offspring_size):
                child = copy.deepcopy(self.individual.reset())
                while child in self.population or child in children:
                    child = child.mutate()
                children.append(child)
        elif self.fitness[0] < 1e-3:
            for _ in range(offspring_size):
                child = copy.deepcopy(self.individual.reset())
                while child in self.population or child in children:
                    child = child.mutate()
                children.append(child)
        else:
            prob = np.array(self.fitness[:parents_size]) / \
                np.sum(self.fitness[:parents_size])

            for _ in range(offspring_size):
                child = copy.deepcopy(self.population[0])
                for key in child.params.keys():
                    idx = np.random.choice(range(parents_size), p=prob)
                    child.params[key] = self.population[idx].params[key]
                child = child.mutate()
                while child in self.population or child in children:
                    child = child.mutate()
                children.append(child)

        return children


class OpEvo(Tuner):
    """OpEvo Tuner

    Parameters
    ----------
    optimize_mode: str, 'maximize' or 'minimize'
    parents_size: int
    offspring_size: int
        parents_size and offspring_size govern the diversity in evolutionary
        process. OpEvo with large parents_size and offspring_size tends to get
        rid of suboptimum but sacrifice data efficiency, while one with smaller
        parants_size and offspring_size is easier to converge but suffers suboptimum.
    mutate_rate: float, (0, 1)
        Mutation rate ranging from 0 to 1. It trade-offs the exploration and
        exploitation. OpEvo tends to exploration as q approaches 0, while tends
        to exploitation as q approaches 1.
    """

    def __init__(self,
                 optimize_mode="maximize",
                 parents_size=20,
                 offspring_size=20,
                 mutate_rate=0.5):
        self.logger = logging.getLogger(
            self.__module__ + "." + self.__class__.__name__)
        self.logger.setLevel('DEBUG')

        self.optimize_mode = optimize_mode
        self.parents_size = parents_size
        self.offspring_size = offspring_size
        self.mutate_rate = mutate_rate

        self.request_list = []
        self.serve_list = []
        self.wait_dict = {}

    def update_search_space(self, search_space):
        """Update the self.bounds and self.types by the search_space.json file.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if not isinstance(search_space, dict):
            self.logger.info("The format of search space is not a dict.")
            raise RuntimeError("The format of search space is not a dict.")

        self.population = Population(search_space,
                                     self.mutate_rate,
                                     self.optimize_mode)
        self.logger.debug('Total search space volume: '
                          + str(self.population.volume))

        if not self.serve_list:
            self.serve_list = self.population.get_offspring(
                self.parents_size, self.offspring_size)

    def generate_multiple_parameters(self, parameter_id_list, **kwargs):
        """Returns multiple sets of trial (hyper-)parameters,
        as iterable of serializable objects.
        """
        result = []
        self.send_trial_callback = kwargs['st_callback']
        for parameter_id in parameter_id_list:
            had_exception = False
            try:
                self.logger.debug("generating param for %s", parameter_id)
                res = self.generate_parameters(parameter_id, **kwargs)
            except nni.NoMoreTrialError:
                had_exception = True
            if not had_exception:
                result.append(res)
        return result

    def generate_parameters(self, parameter_id, **kwargs):
        """Method which provides one set of hyper-parameters.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if self.serve_list:
            self.wait_dict[parameter_id] = self.serve_list.pop()
            return self.wait_dict[parameter_id].pick_out()
        else:
            self.request_list.append(parameter_id)
            raise nni.NoMoreTrialError('no more parameters now.')

    def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
        """Method invoked when a trial reports its final result.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if isinstance(value, dict):
            value = value['default']

        self.population.append(self.wait_dict[parameter_id], value)
        del self.wait_dict[parameter_id]

        if not self.serve_list:
            self.serve_list = self.population.get_offspring(
                self.parents_size, self.offspring_size)

        while self.request_list and self.serve_list:
            param_id = self.request_list[0]
            self.wait_dict[param_id] = self.serve_list.pop()
            self.send_trial_callback(
                param_id, self.wait_dict[param_id].pick_out())
            self.request_list.pop(0)

    def trial_end(self, parameter_id, success, **kwargs):
        """Method invoked when a trial is completed or terminated.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if not success:
            self.population.append(self.wait_dict[parameter_id], 0.0)
            del self.wait_dict[parameter_id]