na2c.py 12.7 KB
Newer Older
gxiaotian's avatar
gxiaotian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
import math
import random
import logging
import copy

import torch
from torch import optim
from torch import nn
import torch.nn.functional as F
import numpy as np

import nni
from nni.tuner import Tuner


class Factor(object):
    """factor type parameter
    """
    def __init__(self, value):
        self.product, self.num = value
        self.partition = [1] * self.num
        self.partition[0] = self.product

    def pick_out(self):
        return self.partition

    def step(self, action):
        if self.partition[action[0]] % action[2] == 0:
            self.partition[action[0]] /= action[2]
            self.partition[action[1]] *= action[2]
            status = True
        else:
            status = False

        return status

    def get_actions(self):
        actions = []
        prime_factors = self._get_prime_factors(self.product, False)
        for i in range(self.num):
            for j in range(self.num):
                if i != j:
                    for k in range(len(prime_factors)):
                        action = [i]
                        action.append(j)
                        action.append(prime_factors[k])
                        actions.append(action)

        return actions

    def __repr__(self):
        return self.partition.__repr__()

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

    def _get_prime_factors(self, n, repeat=True):
        prime_factors = []

        while n % 2 == 0:
            if 2 not in prime_factors:
                prime_factors.append(2)
            elif repeat:
                prime_factors.append(2)
            n = n / 2

        for i in range(3, int(math.sqrt(n)) + 1, 2):
            while n % i == 0:
                if i not in prime_factors:
                    prime_factors.append(i)
                elif repeat:
                    prime_factors.append(i)
                n = n / i

        if n > 2:
            prime_factors.append(int(n))

        return prime_factors


class Configuration(object):
    """Configuration class
    """
    def __init__(self, search_space):
        self.params = {}
        self.key_order = []
        for key in search_space.keys():
            if search_space[key]['_type'] == 'factor':
                self.key_order.append(key)
                self.params[key] = \
                    Factor(search_space[key]['_value'])
            else:
                raise RuntimeError(
                    "N_A2C Tuner doesn't support this kind of parameter: "
                    + str(search_space[key]['_type'])
                )

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

    def __repr__(self):
        string = ""
        for key, value in self.params.items():
            string += key + ': ' + value.__repr__() + ' '

        return string

    def pick_out(self):
        output = {}
        for key in self.params.keys():
            output[key] = self.params[key].pick_out()

        return output

    def step(self, action):
        config = copy.deepcopy(self)
        status = config.params[action[0]].step(action[1])

        return status, config

    def get_actions(self):
        actions = []
        for key, value in self.params.items():
            subactions = value.get_actions()
            for subaction in subactions:
                action = [key]
                action.append(subaction)
                actions.append(action)

        return actions

    def to_torch(self):
        states = []
        for key in self.key_order:
            state = torch.tensor(self.params[key].partition).float() / \
                self.params[key].product - 0.5
            states.append(state)

        return torch.cat(states).float()


class ActorCritic(nn.Module):
    def __init__(self, num_states, num_actions, hidden_size):
        super(ActorCritic, self).__init__()

        self.num_actions = num_actions
        self.fc = nn.Linear(num_states, hidden_size)
        self.critic_linear2 = nn.Linear(hidden_size, 1)
        self.actor_linear2 = nn.Linear(hidden_size, num_actions)

    def forward(self, state):
        x = F.relu(self.fc(state))
        value = self.critic_linear2(x)
        policy_dist = F.softmax(self.actor_linear2(x))

        return value, policy_dist


class Population(object):
    """Population class
    """
    def __init__(self, search_space, opt_mode, n_states, n_steps,
                 hidden_size, lr):
        self.search_space = search_space
        self.opt_mode = opt_mode
        self.n_states = n_states
        self.n_steps = n_steps
        self.hidden_size = hidden_size
        self.lr = lr

        self.config = Configuration(search_space)
        self.max_reward = 0.0

        self.action_space = self.config.get_actions()
        self.dim_actions = len(self.action_space)
        self.dim_states = len(self.config.to_torch())
        self.log_probs = []
        self.values = []
        self.rewards = []

        self.population = []

        self.actor_critic = ActorCritic(
            self.dim_states, self.dim_actions, self.hidden_size
        )
        self.ac_optimizer = optim.Adam(
            self.actor_critic.parameters(), lr=self.lr
        )

    def append(self, individual, fitness):
        if self.opt_mode == "minimize":
            fitness = -1 * fitness

        self.population.append(individual)

        if self.max_reward < fitness:
            self.max_reward = fitness
            self.config = individual

        if self.collect:
            idx = self.collect.index(individual)
            self.waiting_rewards[idx] = fitness
            del self.collect[idx]
        else:
            raise RuntimeError("Received unexpected trials.")

        if not self.collect:
            self.rewards.extend(self.waiting_rewards)

            self.ac_optimizer.zero_grad()
            gradient_loss = 0
            value_loss = 0
            for i in range(len(self.values)):
                advantage = self.rewards[i] - self.values[i]
                gradient_loss += self.log_probs[i] * advantage
                value_loss += torch.pow(advantage, 2)
            loss = gradient_loss + value_loss
            loss.backward()
            self.ac_optimizer.step()

            self.rewards = []
            self.values = []
            self.log_probs = []
            self.collect = []

    def generate(self):
        self.collect = []
        while len(self.collect) < self.n_states:
            config = self.config
            for i in range(self.n_steps):
                value, policy_dist = self.actor_critic(config.to_torch())
                dist = policy_dist.detach().numpy()

                if random.uniform(0, 1) < 0.1:
                    action = random.choice(range(self.dim_actions))
                else:
                    action = np.random.choice(
                        self.dim_actions, p=np.squeeze(dist))

                log_prob = torch.log(policy_dist.squeeze(0)[action])
                # entropy = -np.sum(np.mean(dist) * np.log(dist))
                flag, new_config = config.step(self.action_space[action])

                if (flag and new_config not in self.population
                        and new_config not in self.collect):
                    self.collect.append(new_config)
                    self.log_probs.append(log_prob)
                    self.values.append(value)

                config = new_config
        # print([math.exp(float(i)) for i in self.log_probs])

        self.waiting_rewards = [0.0] * len(self.collect)
        return copy.deepcopy(self.collect)


class N_A2C(Tuner):
    """N-A2C Tuner
    Based on paper Compiler-Level Matrix Multiplication Optimization for Deep Learning

    Parameters
    ----------
    optimize_mode: str, 'maximize' or 'minimize'
    n_states: int,
        The maximum search steps Tau
    n_steps: int
        number of steps to train the policy and critic networks each iteration
    hidden_size: int,
        number of hidden size of the policy and critic networks
    lr: float,
        learning rate of the policy and critic networks
    """

    def __init__(self,
                 optimize_mode="maximize",
                 n_states=6,
                 n_steps=3,
                 hidden_size=128,
                 lr=1e-3):
        self.logger = logging.getLogger(
            self.__module__ + "." + self.__class__.__name__)
        self.logger.setLevel('DEBUG')

        self.opt_mode = optimize_mode
        self.n_states = n_states
        self.n_steps = n_steps
        self.hidden_size = 128
        self.lr = lr

        self.request_list = []
        self.serve_list = []
        self.wait_dict = {}

    def update_search_space(self, search_space):
        """Update the self.bounds and self.types by the search_space.json file.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if not isinstance(search_space, dict):
            self.logger.info("The format of search space is not a dict.")
            raise RuntimeError("The format of search space is not a dict.")

        self.population = \
            Population(
                search_space,
                self.opt_mode,
                self.n_states,
                self.n_steps,
                self.hidden_size,
                self.lr
            )

        if not self.serve_list:
            self.serve_list = self.population.generate()

    def generate_multiple_parameters(self, parameter_id_list, **kwargs):
        """Returns multiple sets of trial (hyper-)parameters,
        as iterable of serializable objects.
        """
        result = []
        self.send_trial_callback = kwargs['st_callback']
        for parameter_id in parameter_id_list:
            had_exception = False
            try:
                self.logger.debug("generating param for %s", parameter_id)
                res = self.generate_parameters(parameter_id, **kwargs)
            except nni.NoMoreTrialError:
                had_exception = True
            if not had_exception:
                result.append(res)
        return result

    def generate_parameters(self, parameter_id, **kwargs):
        """Method which provides one set of hyper-parameters.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if self.serve_list:
            self.wait_dict[parameter_id] = self.serve_list.pop()
            return self.wait_dict[parameter_id].pick_out()
        else:
            self.request_list.append(parameter_id)
            raise nni.NoMoreTrialError('no more parameters now.')

    def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
        """Method invoked when a trial reports its final result.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if isinstance(value, dict):
            value = value['default']

        self.population.append(self.wait_dict[parameter_id], value)
        del self.wait_dict[parameter_id]

        if not self.serve_list and not self.wait_dict:
            self.serve_list = self.population.generate()
            if not self.serve_list:
                raise RuntimeError("Tuner stopped since no candidates")

        while self.request_list and self.serve_list:
            param_id = self.request_list[0]
            self.wait_dict[param_id] = self.serve_list.pop()
            self.send_trial_callback(
                param_id, self.wait_dict[param_id].pick_out())
            self.request_list.pop(0)

        # print('request_list: ' + str(len(self.request_list)))
        # print('serve_list: ' + str(len(self.serve_list)))
        # print('wait_dict: ' + str(len(self.wait_dict.keys())))

    def trial_end(self, parameter_id, success, **kwargs):
        """Method invoked when a trial is completed or terminated.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if not success:
            self.population.append(self.wait_dict[parameter_id], 0.0)
            del self.wait_dict[parameter_id]

            if not self.serve_list and not self.wait_dict:
                self.serve_list = self.population.generate()
                if not self.serve_list:
                    raise RuntimeError("Tuner stopped since no candidates")

            while self.request_list and self.serve_list:
                param_id = self.request_list[0]
                self.wait_dict[param_id] = self.serve_list.pop()
                self.send_trial_callback(
                    param_id, self.wait_dict[param_id].pick_out())
                self.request_list.pop(0)

            # print('trial_end request_list: ' + str(len(self.request_list)))
            # print('trial_end serve_list: ' + str(len(self.serve_list)))
            # print('trial_end wait_dict: ' + str(len(self.wait_dict.keys())))