gbfs.py 8.59 KB
Newer Older
gxiaotian's avatar
gxiaotian committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import math
import random
import logging
import copy

import nni
from nni.tuner import Tuner


class Factor(object):
    """factor type parameter
    """
    def __init__(self, value):
        self.product, self.num = value
        self.partition = [1] * self.num
        self.partition[0] = self.product

    def pick_out(self):
        return self.partition

    def step(self, action):
        tmp = copy.deepcopy(self)
        tmp.partition[action[0]] = int(tmp.partition[action[0]] / action[2])
        tmp.partition[action[1]] = int(tmp.partition[action[1]] * action[2])

        return tmp

    def get_actions(self):
        actions = []
        prime_factors = self._get_prime_factors(self.product, False)
        for i in range(self.num):
            for j in range(self.num):
                if i != j:
                    for k in range(len(prime_factors)):
                        action = [i]
                        action.append(j)
                        action.append(prime_factors[k])
                        if self.partition[action[0]] % action[2] == 0:
                            actions.append(action)
        return actions

    def __repr__(self):
        string = "["
        for factor in self.partition:
            string += factor.__repr__() + " "
        string = string[:-1] + "]"

        return string

    def _get_prime_factors(self, n, repeat=True):
        prime_factors = []

        while n % 2 == 0:
            if 2 not in prime_factors:
                prime_factors.append(2)
            elif repeat:
                prime_factors.append(2)
            n = n / 2

        for i in range(3, int(math.sqrt(n)) + 1, 2):
            while n % i == 0:
                if i not in prime_factors:
                    prime_factors.append(i)
                elif repeat:
                    prime_factors.append(i)
                n = n / i

        if n > 2:
            prime_factors.append(int(n))

        return prime_factors


class Configuration(object):
    """Configuration class
    """
    def __init__(self, search_space):
        self.params = {}
        for key in search_space.keys():
            if search_space[key]['_type'] == 'factor':
                self.params[key] = \
                    Factor(search_space[key]['_value'])
            else:
                raise RuntimeError(
                    "G_BFS Tuner doesn't support this kind of parameter: "
                    + str(search_space[key]['_type'])
                )

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self.__dict__ == other.__dict__
        else:
            return False

    def __repr__(self):
        string = ""
        for param in self.params:
            string += param.__repr__() + '\n'

        return string

    def pick_out(self):
        output = {}
        for key in self.params.keys():
            output[key] = self.params[key].pick_out()

        return output

    def step(self, action):
        config = copy.deepcopy(self)
        config.params[action[0]] = config.params[action[0]].step(action[1])

        return config

    def get_actions(self):
        actions = []
        for key, value in self.params.items():
            subactions = value.get_actions()
            for subaction in subactions:
                action = [key]
                action.append(subaction)
                actions.append(action)

        return actions


class Population(object):
    """Population class
    """

    def __init__(self, opt_mode, search_space, num_samples):
        self.opt_mode = opt_mode
        self.search_space = search_space
        self.num_samples = num_samples

        self.queue = []
        self.population = []
        self.fitness = []

    def append(self, individual, fitness):
        if self.opt_mode == "minimize":
            fitness = -1 * fitness

        self.population.append(individual)
        self.queue.insert(0, individual)
        self.fitness.insert(0, fitness)

        i = 0
        while (i < len(self.fitness) - 1
                and self.fitness[i] < self.fitness[i + 1]):
            self.fitness[i], self.fitness[i + 1] = \
                self.fitness[i + 1], self.fitness[i]
            self.queue[i], self.queue[i + 1] = \
                self.queue[i + 1], self.queue[i]
            i += 1

    def generate(self):
        if not self.fitness and not self.population:
            return [Configuration(self.search_space)]
        elif not self.fitness and self.population:
            return []
        else:
            self.fitness.pop(0)
            config = self.queue.pop(0)

            action_space = config.get_actions()
            num = len(action_space)
            if num > self.num_samples:
                indices = random.sample(range(num), self.num_samples)
            else:
                indices = range(num)

            res = []
            for idx in indices:
                tmp = config.step(action_space[idx])
                if tmp not in self.population:
                    res.append(tmp)

            return res


class G_BFS(Tuner):
    """G-BFS Tuner
    Based on paper Compiler-Level Matrix Multiplication Optimization for Deep Learning

    Parameters
    ----------
    optimize_mode: str, 'maximize' or 'minimize'
    num_samples: int,
        The random selection parameter rho
    """
    def __init__(self, optimize_mode="maximize", num_samples=5):
        self.logger = logging.getLogger(
            self.__module__ + "." + self.__class__.__name__)
        self.logger.setLevel('DEBUG')

        self.opt_mode = optimize_mode
        self.num_samples = num_samples

        self.request_list = []
        self.serve_list = []
        self.wait_dict = {}

    def update_search_space(self, search_space):
        """Update the self.bounds and self.types by the search_space.json file.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if not isinstance(search_space, dict):
            self.logger.info("The format of search space is not a dict.")
            raise RuntimeError("The format of search space is not a dict.")

        self.population = \
            Population(self.opt_mode, search_space, self.num_samples)

        if not self.serve_list:
            self.serve_list = self.population.generate()

    def generate_multiple_parameters(self, parameter_id_list, **kwargs):
        """Returns multiple sets of trial (hyper-)parameters,
        as iterable of serializable objects.
        """
        result = []
        self.send_trial_callback = kwargs['st_callback']
        for parameter_id in parameter_id_list:
            had_exception = False
            try:
                self.logger.debug("generating param for %s", parameter_id)
                res = self.generate_parameters(parameter_id, **kwargs)
            except nni.NoMoreTrialError:
                had_exception = True
            if not had_exception:
                result.append(res)
        return result

    def generate_parameters(self, parameter_id, **kwargs):
        """Method which provides one set of hyper-parameters.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if self.serve_list:
            self.wait_dict[parameter_id] = self.serve_list.pop()
            return self.wait_dict[parameter_id].pick_out()
        else:
            self.request_list.append(parameter_id)
            raise nni.NoMoreTrialError('no more parameters now.')

    def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
        """Method invoked when a trial reports its final result.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if isinstance(value, dict):
            value = value['default']

        self.population.append(self.wait_dict[parameter_id], value)
        del self.wait_dict[parameter_id]

        if not self.serve_list and not self.wait_dict:
            self.serve_list = self.population.generate()
            if not self.serve_list:
                raise RuntimeError("Tuner stopped since no candidates")

        while self.request_list and self.serve_list:
            param_id = self.request_list[0]
            self.wait_dict[param_id] = self.serve_list.pop()
            self.send_trial_callback(
                param_id, self.wait_dict[param_id].pick_out())
            self.request_list.pop(0)

    def trial_end(self, parameter_id, success, **kwargs):
        """Method invoked when a trial is completed or terminated.

        Override of the abstract method in :class:`~nni.tuner.Tuner`.
        """
        if not success:
            self.population.append(self.wait_dict[parameter_id], 0.0)
            del self.wait_dict[parameter_id]