search.py 1.95 KB
Newer Older
Chi Song's avatar
Chi Song committed
1
2
import logging
import time
3
4
5
6
7
from argparse import ArgumentParser

import torch
import torch.nn as nn

Chi Song's avatar
Chi Song committed
8
import datasets
9
from model import CNN
Chi Song's avatar
Chi Song committed
10
11
from nni.nas.pytorch.callbacks import (ArchitectureCheckpoint,
                                       LearningRateScheduler)
12
from nni.nas.pytorch.darts import DartsTrainer
13
14
from utils import accuracy

Chi Song's avatar
Chi Song committed
15
16
17
18
19
20
21
22
23
24
logger = logging.getLogger()

fmt = '[%(asctime)s] %(levelname)s (%(name)s/%(threadName)s) %(message)s'
logging.Formatter.converter = time.localtime
formatter = logging.Formatter(fmt, '%m/%d/%Y, %I:%M:%S %p')

std_out_info = logging.StreamHandler()
std_out_info.setFormatter(formatter)
logger.setLevel(logging.INFO)
logger.addHandler(std_out_info)
25

26
27
if __name__ == "__main__":
    parser = ArgumentParser("darts")
28
    parser.add_argument("--layers", default=8, type=int)
29
    parser.add_argument("--batch-size", default=64, type=int)
30
31
    parser.add_argument("--log-frequency", default=10, type=int)
    parser.add_argument("--epochs", default=50, type=int)
32
33
34
35
    args = parser.parse_args()

    dataset_train, dataset_valid = datasets.get_dataset("cifar10")

36
    model = CNN(32, 3, 16, 10, args.layers)
37
38
39
    criterion = nn.CrossEntropyLoss()

    optim = torch.optim.SGD(model.parameters(), 0.025, momentum=0.9, weight_decay=3.0E-4)
40
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, args.epochs, eta_min=0.001)
41
42
43
44

    trainer = DartsTrainer(model,
                           loss=criterion,
                           metrics=lambda output, target: accuracy(output, target, topk=(1,)),
45
46
                           optimizer=optim,
                           num_epochs=args.epochs,
47
48
49
                           dataset_train=dataset_train,
                           dataset_valid=dataset_valid,
                           batch_size=args.batch_size,
50
51
                           log_frequency=args.log_frequency,
                           callbacks=[LearningRateScheduler(lr_scheduler), ArchitectureCheckpoint("./checkpoints")])
52
    trainer.train()