test_builtin_tuners.py 13.8 KB
Newer Older
liuzhe-lz's avatar
liuzhe-lz committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

4
import glob
Deshui Yu's avatar
Deshui Yu committed
5
import json
6
7
import logging
import os
8
import random
9
10
import shutil
import sys
RayMeng8's avatar
RayMeng8 committed
11
from collections import deque
Deshui Yu's avatar
Deshui Yu committed
12
13
from unittest import TestCase, main

14
15
16
17
18
19
from nni.batch_tuner.batch_tuner import BatchTuner
from nni.evolution_tuner.evolution_tuner import EvolutionTuner
from nni.gp_tuner.gp_tuner import GPTuner
from nni.gridsearch_tuner.gridsearch_tuner import GridSearchTuner
from nni.hyperopt_tuner.hyperopt_tuner import HyperoptTuner
from nni.metis_tuner.metis_tuner import MetisTuner
RayMeng8's avatar
RayMeng8 committed
20
21
from nni.msg_dispatcher import _pack_parameter, MsgDispatcher
from nni.pbt_tuner.pbt_tuner import PBTTuner
22

23
24
25
26
27
try:
    from nni.smac_tuner.smac_tuner import SMACTuner
except ImportError:
    assert sys.platform == "win32"
from nni.tuner import Tuner
Deshui Yu's avatar
Deshui Yu committed
28

RayMeng8's avatar
RayMeng8 committed
29

30
31
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('test_tuner')
Deshui Yu's avatar
Deshui Yu committed
32
33


34
class BuiltinTunersTestCase(TestCase):
35
36
37
38
39
40
    """
    Targeted at testing functions of built-in tuners, including
        - [ ] load_checkpoint
        - [ ] save_checkpoint
        - [X] update_search_space
        - [X] generate_multiple_parameters
41
        - [X] import_data
42
        - [ ] trial_end
43
        - [x] receive_trial_result
44
45
    """

46
47
48
49
50
    def setUp(self):
        self.test_round = 3
        self.params_each_round = 50
        self.exhaustive = False

RayMeng8's avatar
RayMeng8 committed
51
52
53
54
55
    def send_trial_callback(self, param_queue):
        def receive(*args):
            param_queue.append(tuple(args))
        return receive

56
57
58
59
60
    def search_space_test_one(self, tuner_factory, search_space):
        tuner = tuner_factory()
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)

61
        for i in range(self.test_round):
RayMeng8's avatar
RayMeng8 committed
62
            queue = deque()
63
            parameters = tuner.generate_multiple_parameters(list(range(i * self.params_each_round,
RayMeng8's avatar
RayMeng8 committed
64
65
                                                                       (i + 1) * self.params_each_round)),
                                                            st_callback=self.send_trial_callback(queue))
66
67
68
69
            logger.debug(parameters)
            self.check_range(parameters, search_space)
            for k in range(min(len(parameters), self.params_each_round)):
                tuner.receive_trial_result(self.params_each_round * i + k, parameters[k], random.uniform(-100, 100))
RayMeng8's avatar
RayMeng8 committed
70
71
72
73
            while queue:
                id_, params = queue.popleft()
                self.check_range([params], search_space)
                tuner.receive_trial_result(id_, params, random.uniform(-100, 100))
74
75
            if not parameters and not self.exhaustive:
                raise ValueError("No parameters generated")
76
77
78
79
80
81
82

    def check_range(self, generated_params, search_space):
        EPS = 1E-6
        for param in generated_params:
            if self._testMethodName == "test_batch":
                param = {list(search_space.keys())[0]: param}
            for k, v in param.items():
RayMeng8's avatar
RayMeng8 committed
83
84
85
                if k == "load_checkpoint_dir" or k == "save_checkpoint_dir":
                    self.assertIsInstance(v, str)
                    continue
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
                if k.startswith("_mutable_layer"):
                    _, block, layer, choice = k.split("/")
                    cand = search_space[block]["_value"][layer].get(choice)
                    # cand could be None, e.g., optional_inputs_chosen_state
                    if choice == "layer_choice":
                        self.assertIn(v, cand)
                    if choice == "optional_input_size":
                        if isinstance(cand, int):
                            self.assertEqual(v, cand)
                        else:
                            self.assertGreaterEqual(v, cand[0])
                            self.assertLessEqual(v, cand[1])
                    if choice == "optional_inputs":
                        pass  # ignore for now
                    continue
                item = search_space[k]
                if item["_type"] == "choice":
                    self.assertIn(v, item["_value"])
                if item["_type"] == "randint":
                    self.assertIsInstance(v, int)
                if item["_type"] == "uniform":
                    self.assertIsInstance(v, float)
                if item["_type"] in ("randint", "uniform", "quniform", "loguniform", "qloguniform"):
                    self.assertGreaterEqual(v, item["_value"][0])
                    self.assertLessEqual(v, item["_value"][1])
                if item["_type"].startswith("q"):
                    multiple = v / item["_value"][2]
                    print(k, v, multiple, item)
                    if item["_value"][0] + EPS < v < item["_value"][1] - EPS:
                        self.assertAlmostEqual(int(round(multiple)), multiple)
                if item["_type"] in ("qlognormal", "lognormal"):
                    self.assertGreaterEqual(v, 0)
                if item["_type"] == "mutable_layer":
                    for layer_name in item["_value"].keys():
                        self.assertIn(v[layer_name]["chosen_layer"], item["layer_choice"])

122
123
    def search_space_test_all(self, tuner_factory, supported_types=None, ignore_types=None, fail_types=None):
        # Three types: 1. supported; 2. ignore; 3. fail.
124
125
126
127
128
129
130
131
132
133
134
        # NOTE(yuge): ignore types
        # Supported types are listed in the table. They are meant to be supported and should be correct.
        # Other than those, all the rest are "unsupported", which are expected to produce ridiculous results
        # or throw some exceptions. However, there are certain types I can't check. For example, generate
        # "normal" using GP Tuner returns successfully and results are fine if we check the range (-inf to +inf),
        # but they make no sense: it's not a normal distribution. So they are ignored in tests for now.
        with open(os.path.join(os.path.dirname(__file__), "assets/search_space.json"), "r") as fp:
            search_space_all = json.load(fp)
        if supported_types is None:
            supported_types = ["choice", "randint", "uniform", "quniform", "loguniform", "qloguniform",
                               "normal", "qnormal", "lognormal", "qlognormal"]
135
136
137
138
        if fail_types is None:
            fail_types = []
        if ignore_types is None:
            ignore_types = []
139
140
141
        full_supported_search_space = dict()
        for single in search_space_all:
            space = search_space_all[single]
142
            if any(single.startswith(t) for t in ignore_types):
143
                continue
144
            expected_fail = not any(single.startswith(t) for t in supported_types) or \
RayMeng8's avatar
RayMeng8 committed
145
146
                any(single.startswith(t) for t in fail_types) or \
                "fail" in single  # name contains fail (fail on all)
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            single_search_space = {single: space}
            if not expected_fail:
                # supports this key
                self.search_space_test_one(tuner_factory, single_search_space)
                full_supported_search_space.update(single_search_space)
            else:
                # unsupported key
                with self.assertRaises(Exception, msg="Testing {}".format(single)) as cm:
                    self.search_space_test_one(tuner_factory, single_search_space)
                logger.info("%s %s %s", tuner_factory, single, cm.exception)
        if not any(t in self._testMethodName for t in ["batch", "grid_search"]):
            # grid search fails for too many combinations
            logger.info("Full supported search space: %s", full_supported_search_space)
            self.search_space_test_one(tuner_factory, full_supported_search_space)

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def import_data_test(self, tuner_factory, stype="choice_str"):
        """
        import data at the beginning with number value and dict value
        import data in the middle also with number value and dict value, and duplicate data record
        generate parameters after data import

        Parameters
        ----------
        tuner_factory : lambda
            a lambda for instantiate a tuner
        stype : str
            the value type of hp choice, support "choice_str" and "choice_num"
        """
        if stype == "choice_str":
            search_space = {
                "choice_str": {
                    "_type": "choice",
                    "_value": ["cat", "dog", "elephant", "cow", "sheep", "panda"]
                }
            }
        elif stype == "choice_num":
            search_space = {
                "choice_num": {
                    "_type": "choice",
                    "_value": [10, 20, 30, 40, 50, 60]
                }
            }
        else:
            raise RuntimeError("Unexpected stype")
        tuner = tuner_factory()
        self.assertIsInstance(tuner, Tuner)
        tuner.update_search_space(search_space)
        # import data at the beginning
        if stype == "choice_str":
            data = [{"parameter": {"choice_str": "cat"}, "value": 1.1},
                    {"parameter": {"choice_str": "dog"}, "value": {"default": 1.2, "tmp": 2}}]
        else:
            data = [{"parameter": {"choice_num": 20}, "value": 1.1},
                    {"parameter": {"choice_num": 60}, "value": {"default": 1.2, "tmp": 2}}]
        tuner.import_data(data)
        logger.info("Imported data successfully at the beginning")
        # generate parameters
        parameters = tuner.generate_multiple_parameters(list(range(3)))
        for i in range(3):
            tuner.receive_trial_result(i, parameters[i], random.uniform(-100, 100))
        # import data in the middle
        if stype == "choice_str":
            data = [{"parameter": {"choice_str": "cat"}, "value": 1.1},
                    {"parameter": {"choice_str": "dog"}, "value": {"default": 1.2, "tmp": 2}},
                    {"parameter": {"choice_str": "cow"}, "value": 1.3}]
        else:
            data = [{"parameter": {"choice_num": 20}, "value": 1.1},
                    {"parameter": {"choice_num": 60}, "value": {"default": 1.2, "tmp": 2}},
                    {"parameter": {"choice_num": 50}, "value": 1.3}]
        tuner.import_data(data)
        logger.info("Imported data successfully in the middle")
        # generate parameters again
        parameters = tuner.generate_multiple_parameters([3])
        tuner.receive_trial_result(3, parameters[0], random.uniform(-100, 100))

222
    def test_grid_search(self):
223
        self.exhaustive = True
224
225
        tuner_fn = lambda: GridSearchTuner()
        self.search_space_test_all(tuner_fn,
226
                                   supported_types=["choice", "randint", "quniform"])
227
        self.import_data_test(tuner_fn)
228
229

    def test_tpe(self):
230
231
        tuner_fn = lambda: HyperoptTuner("tpe")
        self.search_space_test_all(tuner_fn,
232
233
                                   ignore_types=["uniform_equal", "qloguniform_equal", "loguniform_equal", "quniform_clip_2"])
        # NOTE: types are ignored because `tpe.py line 465, in adaptive_parzen_normal assert prior_sigma > 0`
234
        self.import_data_test(tuner_fn)
235
236

    def test_random_search(self):
237
238
239
        tuner_fn = lambda: HyperoptTuner("random_search")
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
240
241

    def test_anneal(self):
242
243
244
        tuner_fn = lambda: HyperoptTuner("anneal")
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
245
246
247
248

    def test_smac(self):
        if sys.platform == "win32":
            return  # smac doesn't work on windows
249
250
        tuner_fn = lambda: SMACTuner()
        self.search_space_test_all(tuner_fn,
251
                                   supported_types=["choice", "randint", "uniform", "quniform", "loguniform"])
252
        self.import_data_test(tuner_fn)
253
254

    def test_batch(self):
255
        self.exhaustive = True
256
257
        tuner_fn = lambda: BatchTuner()
        self.search_space_test_all(tuner_fn,
258
                                   supported_types=["choice"])
259
        self.import_data_test(tuner_fn)
260
261
262

    def test_evolution(self):
        # Needs enough population size, otherwise it will throw a runtime error
263
264
265
        tuner_fn = lambda: EvolutionTuner(population_size=100)
        self.search_space_test_all(tuner_fn)
        self.import_data_test(tuner_fn)
266
267

    def test_gp(self):
268
        self.test_round = 1  # NOTE: GP tuner got hanged for multiple testing round
269
270
        tuner_fn = lambda: GPTuner()
        self.search_space_test_all(tuner_fn,
271
272
                                   supported_types=["choice", "randint", "uniform", "quniform", "loguniform",
                                                    "qloguniform"],
273
274
                                   ignore_types=["normal", "lognormal", "qnormal", "qlognormal"],
                                   fail_types=["choice_str", "choice_mixed"])
275
        self.import_data_test(tuner_fn, "choice_num")
276
277

    def test_metis(self):
278
        self.test_round = 1  # NOTE: Metis tuner got hanged for multiple testing round
279
280
        tuner_fn = lambda: MetisTuner()
        self.search_space_test_all(tuner_fn,
281
282
                                   supported_types=["choice", "randint", "uniform", "quniform"],
                                   fail_types=["choice_str", "choice_mixed"])
283
        self.import_data_test(tuner_fn, "choice_num")
284
285
286
287
288
289
290

    def test_networkmorphism(self):
        pass

    def test_ppo(self):
        pass

RayMeng8's avatar
RayMeng8 committed
291
292
293
294
295
296
297
298
299
300
    def test_pbt(self):
        self.search_space_test_all(lambda: PBTTuner(
            all_checkpoint_dir=os.path.expanduser("~/nni/checkpoint/test/"),
            population_size=12
        ))
        self.search_space_test_all(lambda: PBTTuner(
            all_checkpoint_dir=os.path.expanduser("~/nni/checkpoint/test/"),
            population_size=100
        ))

301
302
303
304
305
306
307
308
    def tearDown(self):
        file_list = glob.glob("smac3*") + ["param_config_space.pcs", "scenario.txt", "model_path"]
        for file in file_list:
            if os.path.exists(file):
                if os.path.isdir(file):
                    shutil.rmtree(file)
                else:
                    os.remove(file)
Deshui Yu's avatar
Deshui Yu committed
309
310
311
312


if __name__ == '__main__':
    main()