retrain.py 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import sys
import os
import logging
import pickle
import shutil
import random
import math

import time
import datetime
import argparse
import distutils.util

import numpy as np
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
import torch.nn.functional as Func

from model import Model
from nni.nas.pytorch.fixed import apply_fixed_architecture
from dataloader import read_data_sst


logger = logging.getLogger("nni.textnas")


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--reset_output_dir",
        type=distutils.util.strtobool,
        default=True,
        help="Whether to clean the output dir if existed. (default: %(default)s)")
    parser.add_argument(
        "--child_fixed_arc",
        type=str,
        required=True,
        help="Architecture json file. (default: %(default)s)")
    parser.add_argument(
        "--data_path",
        type=str,
        default="data",
        help="Directory containing the dataset and embedding file. (default: %(default)s)")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="The output directory. (default: %(default)s)")
    parser.add_argument(
        "--child_lr_decay_scheme",
        type=str,
        default="cosine",
        help="Learning rate annealing strategy, only 'cosine' supported. (default: %(default)s)")
    parser.add_argument(
        "--batch_size",
        type=int,
        default=128,
        help="Number of samples each batch for training. (default: %(default)s)")
    parser.add_argument(
        "--eval_batch_size",
        type=int,
        default=128,
        help="Number of samples each batch for evaluation. (default: %(default)s)")
    parser.add_argument(
        "--class_num",
        type=int,
        default=5,
        help="The number of categories. (default: %(default)s)")
    parser.add_argument(
        "--global_seed",
        type=int,
        default=1234,
        help="Seed for reproduction. (default: %(default)s)")
    parser.add_argument(
        "--max_input_length",
        type=int,
        default=64,
        help="The maximum length of the sentence. (default: %(default)s)")
    parser.add_argument(
        "--num_epochs",
        type=int,
        default=10,
        help="The number of training epochs. (default: %(default)s)")
    parser.add_argument(
        "--child_num_layers",
        type=int,
        default=24,
        help="The layer number of the architecture. (default: %(default)s)")
    parser.add_argument(
        "--child_out_filters",
        type=int,
        default=256,
        help="The dimension of hidden states. (default: %(default)s)")
    parser.add_argument(
        "--child_out_filters_scale",
        type=int,
        default=1,
        help="The scale of hidden state dimension. (default: %(default)s)")
    parser.add_argument(
        "--child_lr_T_0",
        type=int,
        default=10,
        help="The length of one cycle. (default: %(default)s)")
    parser.add_argument(
        "--child_lr_T_mul",
        type=int,
        default=2,
        help="The multiplication factor per cycle. (default: %(default)s)")
    parser.add_argument(
        "--min_count",
        type=int,
        default=1,
        help="The threshold to cut off low frequent words. (default: %(default)s)")
    parser.add_argument(
        "--train_ratio",
        type=float,
        default=1.0,
        help="The sample ratio for the training set. (default: %(default)s)")
    parser.add_argument(
        "--valid_ratio",
        type=float,
        default=1.0,
        help="The sample ratio for the dev set. (default: %(default)s)")
    parser.add_argument(
        "--child_grad_bound",
        type=float,
        default=5.0,
        help="The threshold for gradient clipping. (default: %(default)s)")
    parser.add_argument(
        "--child_lr",
        type=float,
        default=0.02,
        help="The initial learning rate. (default: %(default)s)")
    parser.add_argument(
        "--cnn_keep_prob",
        type=float,
        default=0.8,
        help="Keep prob for cnn layer. (default: %(default)s)")
    parser.add_argument(
        "--final_output_keep_prob",
        type=float,
        default=1.0,
        help="Keep prob for the last output layer. (default: %(default)s)")
    parser.add_argument(
        "--lstm_out_keep_prob",
        type=float,
        default=0.8,
        help="Keep prob for the RNN layer. (default: %(default)s)")
    parser.add_argument(
        "--embed_keep_prob",
        type=float,
        default=0.8,
        help="Keep prob for the embedding layer. (default: %(default)s)")
    parser.add_argument(
        "--attention_keep_prob",
        type=float,
        default=0.8,
        help="Keep prob for the self-attention layer. (default: %(default)s)")
    parser.add_argument(
        "--child_l2_reg",
        type=float,
        default=3e-6,
        help="Weight decay factor. (default: %(default)s)")
    parser.add_argument(
        "--child_lr_max",
        type=float,
        default=0.002,
        help="The max learning rate. (default: %(default)s)")
    parser.add_argument(
        "--child_lr_min",
        type=float,
        default=0.001,
        help="The min learning rate. (default: %(default)s)")
    parser.add_argument(
        "--child_optim_algo",
        type=str,
        default="adam",
        help="Optimization algorithm. (default: %(default)s)")
    parser.add_argument(
        "--checkpoint_dir",
        type=str,
        default="best_checkpoint",
        help="Path for saved checkpoints. (default: %(default)s)")
    parser.add_argument(
        "--output_type",
        type=str,
        default="avg",
        help="Opertor type for the time steps reduction. (default: %(default)s)")
    parser.add_argument(
        "--multi_path",
        type=distutils.util.strtobool,
        default=False,
        help="Search for multiple path in the architecture. (default: %(default)s)")
    parser.add_argument(
        "--is_binary",
        type=distutils.util.strtobool,
        default=False,
        help="Binary label for sst dataset. (default: %(default)s)")
    parser.add_argument(
        "--is_cuda",
        type=distutils.util.strtobool,
        default=True,
        help="Specify the device type. (default: %(default)s)")
    parser.add_argument(
        "--is_mask",
        type=distutils.util.strtobool,
        default=True,
        help="Apply mask. (default: %(default)s)")
    parser.add_argument(
        "--fixed_seed",
        type=distutils.util.strtobool,
        default=True,
        help="Fix the seed. (default: %(default)s)")
    parser.add_argument(
        "--load_checkpoint",
        type=distutils.util.strtobool,
        default=False,
        help="Wether to load checkpoint. (default: %(default)s)")
    parser.add_argument(
        "--log_every",
        type=int,
        default=50,
        help="How many steps to log. (default: %(default)s)")
    parser.add_argument(
        "--eval_every_epochs",
        type=int,
        default=1,
        help="How many epochs to eval. (default: %(default)s)")

    global FLAGS

    FLAGS = parser.parse_args()


def set_random_seed(seed):
    logger.info("set random seed for data reading: {}".format(seed))
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.manual_seed(seed)
    if FLAGS.is_cuda:
        torch.cuda.manual_seed(seed)
        torch.backends.cudnn.deterministic = True


def get_model(embedding, num_layers):
    logger.info("num layers: {0}".format(num_layers))
    assert FLAGS.child_fixed_arc is not None, "Architecture should be provided."

    child_model = Model(
        embedding=embedding,
        hidden_units=FLAGS.child_out_filters_scale * FLAGS.child_out_filters,
        num_layers=num_layers,
        num_classes=FLAGS.class_num,
        choose_from_k=5 if FLAGS.multi_path else 1,
        lstm_keep_prob=FLAGS.lstm_out_keep_prob,
        cnn_keep_prob=FLAGS.cnn_keep_prob,
        att_keep_prob=FLAGS.attention_keep_prob,
        att_mask=FLAGS.is_mask,
        embed_keep_prob=FLAGS.embed_keep_prob,
        final_output_keep_prob=FLAGS.final_output_keep_prob,
        global_pool=FLAGS.output_type)

    apply_fixed_architecture(child_model, FLAGS.child_fixed_arc)
    return child_model


def eval_once(child_model, device, eval_set, criterion, valid_dataloader=None, test_dataloader=None):
    if eval_set == "test":
        assert test_dataloader is not None
        dataloader = test_dataloader
    elif eval_set == "valid":
        assert valid_dataloader is not None
        dataloader = valid_dataloader
    else:
        raise NotImplementedError("Unknown eval_set '{}'".format(eval_set))

    tot_acc = 0
    tot = 0
    losses = []

    with torch.no_grad():  # save memory
        for batch in dataloader:
            (sent_ids, mask), labels = batch

            sent_ids = sent_ids.to(device, non_blocking=True)
            mask = mask.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            logits = child_model((sent_ids, mask))  # run

            loss = criterion(logits, labels.long())
            loss = loss.mean()
            preds = logits.argmax(dim=1).long()
            acc = torch.eq(preds, labels.long()).long().sum().item()

            losses.append(loss)
            tot_acc += acc
            tot += len(labels)

    losses = torch.tensor(losses)
    loss = losses.mean()
    if tot > 0:
        final_acc = float(tot_acc) / tot
    else:
        final_acc = 0
        logger.info("Error in calculating final_acc")
    return final_acc, loss


def print_user_flags(FLAGS, line_limit=80):
    log_strings = "\n" + "-" * line_limit + "\n"
    for flag_name in sorted(vars(FLAGS)):
        value = "{}".format(getattr(FLAGS, flag_name))
        log_string = flag_name
        log_string += "." * (line_limit - len(flag_name) - len(value))
        log_string += value
        log_strings = log_strings + log_string
        log_strings = log_strings + "\n"
    log_strings += "-" * line_limit
    logger.info(log_strings)


def count_model_params(trainable_params):
    num_vars = 0
    for var in trainable_params:
        num_vars += np.prod([dim for dim in var.size()])
    return num_vars


def update_lr(
        optimizer,
        epoch,
        l2_reg=1e-4,
        lr_warmup_val=None,
        lr_init=0.1,
        lr_decay_scheme="cosine",
        lr_max=0.002,
        lr_min=0.000000001,
        lr_T_0=4,
        lr_T_mul=1,
        sync_replicas=False,
        num_aggregate=None,
        num_replicas=None):
    if lr_decay_scheme == "cosine":
        assert lr_max is not None, "Need lr_max to use lr_cosine"
        assert lr_min is not None, "Need lr_min to use lr_cosine"
        assert lr_T_0 is not None, "Need lr_T_0 to use lr_cosine"
        assert lr_T_mul is not None, "Need lr_T_mul to use lr_cosine"

        T_i = lr_T_0
        t_epoch = epoch
        last_reset = 0
        while True:
            t_epoch -= T_i
            if t_epoch < 0:
              break
            last_reset += T_i
            T_i *= lr_T_mul

        T_curr = epoch - last_reset

        def _update():
            rate = T_curr / T_i * 3.1415926
            lr = lr_min + 0.5 * (lr_max - lr_min) * (1.0 + math.cos(rate))
            return lr

        learning_rate = _update()
    else:
        raise ValueError("Unknown learning rate decay scheme {}".format(lr_decay_scheme))

    #update lr in optimizer
    for params_group in optimizer.param_groups:
        params_group['lr'] = learning_rate
    return learning_rate


def train(device, data_path, output_dir, num_layers):
    logger.info("Build dataloader")
    train_dataset, valid_dataset, test_dataset, embedding = \
        read_data_sst(data_path,
                      FLAGS.max_input_length,
                      FLAGS.min_count,
                      train_ratio=FLAGS.train_ratio,
                      valid_ratio=FLAGS.valid_ratio,
                      is_binary=FLAGS.is_binary)
    train_dataloader = DataLoader(train_dataset, batch_size=FLAGS.batch_size, shuffle=True, pin_memory=True)
    test_dataloader = DataLoader(test_dataset, batch_size=FLAGS.eval_batch_size, pin_memory=True)
    valid_dataloader = DataLoader(valid_dataset, batch_size=FLAGS.eval_batch_size, pin_memory=True)

    logger.info("Build model")
    child_model = get_model(embedding, num_layers)
    logger.info("Finish build model")

    #for name, var in child_model.named_parameters():
    #    logger.info(name, var.size(), var.requires_grad)  # output all params

    num_vars = count_model_params(child_model.parameters())
    logger.info("Model has {} params".format(num_vars))

    for m in child_model.modules():  # initializer
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.xavier_uniform_(m.weight)

    criterion = nn.CrossEntropyLoss()

    # get optimizer
    if FLAGS.child_optim_algo == "adam":
        optimizer = optim.Adam(child_model.parameters(), eps=1e-3, weight_decay=FLAGS.child_l2_reg)  # with L2
    else:
        raise ValueError("Unknown optim_algo {}".format(FLAGS.child_optim_algo))

    child_model.to(device)
    criterion.to(device)

    logger.info("Start training")
    start_time = time.time()
    step = 0

    # save path
    model_save_path = os.path.join(FLAGS.output_dir, "model.pth")
    best_model_save_path = os.path.join(FLAGS.output_dir, "best_model.pth")
    best_acc = 0
    start_epoch = 0
    if FLAGS.load_checkpoint:
        if os.path.isfile(model_save_path):
            checkpoint = torch.load(model_save_path, map_location = torch.device('cpu'))
            step = checkpoint['step']
            start_epoch = checkpoint['epoch']
            child_model.load_state_dict(checkpoint['child_model_state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer_state_dict'])

    for epoch in range(start_epoch, FLAGS.num_epochs):
        lr = update_lr(optimizer,
                       epoch,
                       l2_reg=FLAGS.child_l2_reg,
                       lr_warmup_val=None,
                       lr_init=FLAGS.child_lr,
                       lr_decay_scheme=FLAGS.child_lr_decay_scheme,
                       lr_max=FLAGS.child_lr_max,
                       lr_min=FLAGS.child_lr_min,
                       lr_T_0=FLAGS.child_lr_T_0,
                       lr_T_mul=FLAGS.child_lr_T_mul)
        child_model.train()
        for batch in train_dataloader:
            (sent_ids, mask), labels = batch

            sent_ids = sent_ids.to(device, non_blocking=True)
            mask = mask.to(device, non_blocking=True)
            labels = labels.to(device, non_blocking=True)

            step += 1

            logits = child_model((sent_ids, mask))  # run

            loss = criterion(logits, labels.long())
            loss = loss.mean()
            preds = logits.argmax(dim=1).long()
            acc = torch.eq(preds, labels.long()).long().sum().item()

            optimizer.zero_grad()
            loss.backward()
            grad_norm = 0
            trainable_params = child_model.parameters()

            assert FLAGS.child_grad_bound is not None, "Need grad_bound to clip gradients."
            # compute the gradient norm value
            grad_norm = nn.utils.clip_grad_norm_(trainable_params, 99999999)
            for param in trainable_params:
                nn.utils.clip_grad_norm_(param, FLAGS.child_grad_bound)  # clip grad

            optimizer.step()

            if step % FLAGS.log_every == 0:
                curr_time = time.time()
                log_string = ""
                log_string += "epoch={:<6d}".format(epoch)
                log_string += "ch_step={:<6d}".format(step)
                log_string += " loss={:<8.6f}".format(loss)
                log_string += " lr={:<8.4f}".format(lr)
                log_string += " |g|={:<8.4f}".format(grad_norm)
                log_string += " tr_acc={:<3d}/{:>3d}".format(acc, logits.size()[0])
                log_string += " mins={:<10.2f}".format(float(curr_time - start_time) / 60)
                logger.info(log_string)

        epoch += 1
        save_state = {
            'step' : step,
            'epoch' : epoch,
            'child_model_state_dict' : child_model.state_dict(),
            'optimizer_state_dict' : optimizer.state_dict()}
        torch.save(save_state, model_save_path)
        child_model.eval()
        logger.info("Epoch {}: Eval".format(epoch))
        eval_acc, eval_loss = eval_once(child_model, device, "test", criterion, test_dataloader=test_dataloader)
        logger.info("ch_step={} {}_accuracy={:<6.4f} {}_loss={:<6.4f}".format(step, "test", eval_acc, "test", eval_loss))
        if eval_acc > best_acc:
            best_acc = eval_acc
            logger.info("Save best model")
            save_state = {
                'step' : step,
                'epoch' : epoch,
                'child_model_state_dict' : child_model.state_dict(),
                'optimizer_state_dict' : optimizer.state_dict()}
            torch.save(save_state, best_model_save_path)

    return eval_acc


def main():
    parse_args()
    if not os.path.isdir(FLAGS.output_dir):
        logger.info("Path {} does not exist. Creating.".format(FLAGS.output_dir))
        os.makedirs(FLAGS.output_dir)
    elif FLAGS.reset_output_dir:
        logger.info("Path {} exists. Remove and remake.".format(FLAGS.output_dir))
        shutil.rmtree(FLAGS.output_dir, ignore_errors=True)
        os.makedirs(FLAGS.output_dir)

    print_user_flags(FLAGS)

    if FLAGS.fixed_seed:
        set_random_seed(FLAGS.global_seed)

    device = torch.device("cuda" if FLAGS.is_cuda else "cpu")
    train(device, FLAGS.data_path, FLAGS.output_dir, FLAGS.child_num_layers)


if __name__ == "__main__":
  main()