"vscode:/vscode.git/clone" did not exist on "34b563b18b6073b7cd4e040896c3363d321b641a"
mnist.py 8.47 KB
Newer Older
Deshui Yu's avatar
Deshui Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""A deep MNIST classifier using convolutional layers."""

import logging
import math
import tempfile
import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

import nni

FLAGS = None

logger = logging.getLogger('mnist_AutoML')


class MnistNetwork(object):
    '''
    MnistNetwork is for initlizing and building basic network for mnist.
    '''
    def __init__(self,
                 channel_1_num,
                 channel_2_num,
                 conv_size,
                 hidden_size,
                 pool_size,
                 learning_rate,
                 x_dim=784,
                 y_dim=10):
        self.channel_1_num = channel_1_num
        self.channel_2_num = channel_2_num
        self.conv_size = conv_size
        self.hidden_size = hidden_size
        self.pool_size = pool_size
        self.learning_rate = learning_rate
        self.x_dim = x_dim
        self.y_dim = y_dim

        self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x')
        self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y')
        self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')

        self.train_step = None
        self.accuracy = None

    def build_network(self):
        '''
        Building network for mnist
        '''

        # Reshape to use within a convolutional neural net.
        # Last dimension is for "features" - there is only one here, since images are
        # grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
        with tf.name_scope('reshape'):
            try:
                input_dim = int(math.sqrt(self.x_dim))
            except:
                print(
                    'input dim cannot be sqrt and reshape. input dim: ' + str(self.x_dim))
                logger.debug(
                    'input dim cannot be sqrt and reshape. input dim: %s', str(self.x_dim))
                raise
            x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1])

        # First convolutional layer - maps one grayscale image to 32 feature maps.
        with tf.name_scope('conv1'):
            w_conv1 = weight_variable(
                [self.conv_size, self.conv_size, 1, self.channel_1_num])
            b_conv1 = bias_variable([self.channel_1_num])
            h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)

        # Pooling layer - downsamples by 2X.
        with tf.name_scope('pool1'):
            h_pool1 = max_pool(h_conv1, self.pool_size)

        # Second convolutional layer -- maps 32 feature maps to 64.
        with tf.name_scope('conv2'):
            w_conv2 = weight_variable([self.conv_size, self.conv_size,
                                       self.channel_1_num, self.channel_2_num])
            b_conv2 = bias_variable([self.channel_2_num])
            h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)

        # Second pooling layer.
        with tf.name_scope('pool2'):
            h_pool2 = max_pool(h_conv2, self.pool_size)

        # Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
        # is down to 7x7x64 feature maps -- maps this to 1024 features.
        last_dim = int(input_dim / (self.pool_size * self.pool_size))
        with tf.name_scope('fc1'):
            w_fc1 = weight_variable(
                [last_dim * last_dim * self.channel_2_num, self.hidden_size])
            b_fc1 = bias_variable([self.hidden_size])

        h_pool2_flat = tf.reshape(
            h_pool2, [-1, last_dim * last_dim * self.channel_2_num])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)

        # Dropout - controls the complexity of the model, prevents co-adaptation of features.
        with tf.name_scope('dropout'):
            h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)

        # Map the 1024 features to 10 classes, one for each digit
        with tf.name_scope('fc2'):
            w_fc2 = weight_variable([self.hidden_size, self.y_dim])
            b_fc2 = bias_variable([self.y_dim])
            y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2

        with tf.name_scope('loss'):
            cross_entropy = tf.reduce_mean(
                tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=y_conv))
        with tf.name_scope('adam_optimizer'):
            self.train_step = tf.train.AdamOptimizer(
                self.learning_rate).minimize(cross_entropy)

        with tf.name_scope('accuracy'):
            correct_prediction = tf.equal(
                tf.argmax(y_conv, 1), tf.argmax(self.labels, 1))
            self.accuracy = tf.reduce_mean(
                tf.cast(correct_prediction, tf.float32))


def conv2d(x_input, w_matrix):
    """conv2d returns a 2d convolution layer with full stride."""
    return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME')


def max_pool(x_input, pool_size):
    """max_pool downsamples a feature map by 2X."""
    return tf.nn.max_pool(x_input, ksize=[1, pool_size, pool_size, 1],
                          strides=[1, pool_size, pool_size, 1], padding='SAME')


def weight_variable(shape):
    """weight_variable generates a weight variable of a given shape."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    """bias_variable generates a bias variable of a given shape."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def main(params):
    '''
    Main function, build mnist network, run and send result to NNI.
    '''
    # Import data
    mnist = input_data.read_data_sets(params['data_dir'], one_hot=True)
    print('Mnist download data down.')
    logger.debug('Mnist download data down.')

    # Create the model
    # Build the graph for the deep net
    mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
                                 channel_2_num=params['channel_2_num'],
                                 conv_size=params['conv_size'],
                                 hidden_size=params['hidden_size'],
                                 pool_size=params['pool_size'],
                                 learning_rate=params['learning_rate'])
    mnist_network.build_network()
    logger.debug('Mnist build network done.')

    # Write log
    graph_location = tempfile.mkdtemp()
    logger.debug('Saving graph to: %s', graph_location)
    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())

    test_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(params['batch_num']):
QuanluZhang's avatar
QuanluZhang committed
176
            batch = mnist.train.next_batch(params['batch_size'])
Deshui Yu's avatar
Deshui Yu committed
177
178
            mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0],
                                                    mnist_network.labels: batch[1],
QuanluZhang's avatar
QuanluZhang committed
179
                                                    mnist_network.keep_prob: 1 - params['dropout_rate']}
Deshui Yu's avatar
Deshui Yu committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                                        )

            if i % 100 == 0:
                test_acc = mnist_network.accuracy.eval(
                    feed_dict={mnist_network.images: mnist.test.images,
                               mnist_network.labels: mnist.test.labels,
                               mnist_network.keep_prob: 1.0})

                nni.report_intermediate_result(test_acc)
                logger.debug('test accuracy %g', test_acc)
                logger.debug('Pipe send intermediate result done.')

        test_acc = mnist_network.accuracy.eval(
            feed_dict={mnist_network.images: mnist.test.images,
                       mnist_network.labels: mnist.test.labels,
                       mnist_network.keep_prob: 1.0})

        nni.report_final_result(test_acc)
        logger.debug('Final result is %g', test_acc)
        logger.debug('Send final result done.')


def generate_default_params():
    '''
    Generate default parameters for mnist network.
    '''
    params = {
        'data_dir': '/tmp/tensorflow/mnist/input_data',
        'dropout_rate': 0.5,
        'channel_1_num': 32,
        'channel_2_num': 64,
        'conv_size': 5,
        'pool_size': 2,
        'hidden_size': 1024,
        'learning_rate': 1e-4,
QuanluZhang's avatar
QuanluZhang committed
215
216
        'batch_num': 2000,
        'batch_size': 32}
Deshui Yu's avatar
Deshui Yu committed
217
218
219
220
221
222
    return params


if __name__ == '__main__':
    try:
        # get parameters form tuner
chicm-ms's avatar
chicm-ms committed
223
        RCV_PARAMS = nni.get_next_parameter()
Deshui Yu's avatar
Deshui Yu committed
224
225
226
227
228
229
230
231
        logger.debug(RCV_PARAMS)
        # run
        params = generate_default_params()
        params.update(RCV_PARAMS)
        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise