test_pruners.py 10.2 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
8
import torch.utils.data
chicm-ms's avatar
chicm-ms committed
9
10
11
import math
from unittest import TestCase, main
from nni.compression.torch import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
12
    L2FilterPruner, AGPPruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner, \
13
14
15
    TaylorFOWeightFilterPruner, NetAdaptPruner, SimulatedAnnealingPruner, ADMMPruner, \
    AutoCompressPruner, AMCPruner
from models.pytorch_models.mobilenet import MobileNet
chicm-ms's avatar
chicm-ms committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg

prune_config = {
    'level': {
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, False),
            lambda model: validate_sparsity(model.fc, 0.5, False)
        ]
    },
    'agp': {
39
        'pruner_class': AGPPruner,
chicm-ms's avatar
chicm-ms committed
40
        'config_list': [{
41
            'initial_sparsity': 0.,
chicm-ms's avatar
chicm-ms committed
42
43
44
45
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
46
            'op_types': ['Conv2d']
chicm-ms's avatar
chicm-ms committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        }],
        'validators': []
    },
    'slim': {
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.bn1, 0.7, model.bias)
        ]
    },
    'fpgm': {
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l1': {
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l2': {
        'pruner_class': L2FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
90
91
92
93
94
95
96
97
98
99
    'taylorfo': {
        'pruner_class': TaylorFOWeightFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
chicm-ms's avatar
chicm-ms committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    'mean_activation': {
        'pruner_class': ActivationMeanRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'apoz': {
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
Guoxin's avatar
Guoxin committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    },
    'netadapt': {
        'pruner_class': NetAdaptPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'short_term_fine_tuner': lambda model:model, 
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'simulatedannealing': {
        'pruner_class': SimulatedAnnealingPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'admm': {
        'pruner_class': ADMMPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'trainer': lambda model, optimizer, criterion, epoch, callback : model, 
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'autocompress': {
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'trainer': lambda model, optimizer, criterion, epoch, callback : model,
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
160
161
162
163
164
165
    },
    'amc': {
        'pruner_class': AMCPruner,
        'config_list':[{
            'op_types': ['Conv2d', 'Linear']
        }]
chicm-ms's avatar
chicm-ms committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    }
}

class Model(nn.Module):
    def __init__(self, bias=True):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, padding=1, bias=bias)
        self.bn1 = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(8, 2, bias=bias)
        self.bias = bias
    def forward(self, x):
        return self.fc(self.pool(self.bn1(self.conv1(x))).view(x.size(0), -1))

Guoxin's avatar
Guoxin committed
180
def pruners_test(pruner_names=['level', 'agp', 'slim', 'fpgm', 'l1', 'l2', 'taylorfo', 'mean_activation', 'apoz', 'netadapt', 'simulatedannealing', 'admm', 'autocompress'], bias=True):
chicm-ms's avatar
chicm-ms committed
181
    for pruner_name in pruner_names:
Guoxin's avatar
Guoxin committed
182
183
184
        print('testing {}...'.format(pruner_name))
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = Model(bias=bias).to(device)
chicm-ms's avatar
chicm-ms committed
185
186
187
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config[pruner_name]['config_list']

Guoxin's avatar
Guoxin committed
188
189
        x = torch.randn(2, 1, 28, 28).to(device)
        y = torch.tensor([0, 1]).long().to(device)
chicm-ms's avatar
chicm-ms committed
190
191
192
193
194
195
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

Guoxin's avatar
Guoxin committed
196
197
198
199
200
201
202
203
        if pruner_name == 'netadapt':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, short_term_fine_tuner=prune_config[pruner_name]['short_term_fine_tuner'], evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'simulatedannealing':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'admm':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'])
        elif pruner_name == 'autocompress':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'], evaluator=prune_config[pruner_name]['evaluator'], dummy_input=x)
Guoxin's avatar
Guoxin committed
204
        else:
Guoxin's avatar
Guoxin committed
205
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, optimizer)
chicm-ms's avatar
chicm-ms committed
206
207
        pruner.compress()

Guoxin's avatar
Guoxin committed
208
209
        x = torch.randn(2, 1, 28, 28).to(device)
        y = torch.tensor([0, 1]).long().to(device)
chicm-ms's avatar
chicm-ms committed
210
211
212
213
214
215
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

216
217
218
219
220
        if pruner_name == 'taylorfo':
            # taylorfo algorithm calculate contributions at first iteration(step), and do pruning
            # when iteration >= statistics_batch_num (default 1)
            optimizer.step()

Guoxin's avatar
Guoxin committed
221
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,1,28,28), device=device)
chicm-ms's avatar
chicm-ms committed
222
223
224
225

        for v in prune_config[pruner_name]['validators']:
            v(model)

Guoxin's avatar
Guoxin committed
226
227
228
229
230
    
    filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', './search_history.csv', './search_result.json']
    for f in filePaths:
        if os.path.exists(f):
            os.remove(f)
chicm-ms's avatar
chicm-ms committed
231

232
233
234
235
236
def test_agp(pruning_algorithm):
        model = Model()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config['agp']['config_list']

237
        pruner = AGPPruner(model, config_list, optimizer, pruning_algorithm=pruning_algorithm)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        pruner.compress()

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()

        for epoch in range(config_list[0]['start_epoch'], config_list[0]['end_epoch']+1):
            pruner.update_epoch(epoch)
            out = model(x)
            loss = F.cross_entropy(out, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            target_sparsity = pruner.compute_target_sparsity(config_list[0])
            actual_sparsity = (model.conv1.weight_mask == 0).sum().item() / model.conv1.weight_mask.numel()
            # set abs_tol = 0.2, considering the sparsity error for channel pruning when number of channels is small.
            assert math.isclose(actual_sparsity, target_sparsity, abs_tol=0.2)

256
257
258
259
260
261
262
class SimpleDataset:
    def __getitem__(self, index):
        return torch.randn(3, 32, 32), 1.

    def __len__(self):
        return 1000

chicm-ms's avatar
chicm-ms committed
263
264
265
266
267
268
269
class PrunerTestCase(TestCase):
    def test_pruners(self):
        pruners_test(bias=True)

    def test_pruners_no_bias(self):
        pruners_test(bias=False)

270
271
272
273
274
275
276
277
    def test_agp_pruner(self):
        for pruning_algorithm in ['l1', 'l2', 'taylorfo', 'apoz']:
            test_agp(pruning_algorithm)

        for pruning_algorithm in ['level']:
            prune_config['agp']['config_list'][0]['op_types'] = ['default']
            test_agp(pruning_algorithm)

278
279
280
281
282
283
284
285
286
287
    def testAMC(self):
        model = MobileNet(n_class=10)

        def validate(val_loader, model):
            return 80.
        val_loader = torch.utils.data.DataLoader(SimpleDataset(), batch_size=16, shuffle=False, drop_last=True)
        config_list = prune_config['amc']['config_list']
        pruner = AMCPruner(model, config_list, validate, val_loader, train_episode=1)
        pruner.compress()

chicm-ms's avatar
chicm-ms committed
288
289
290
291
292
293
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,3,32,32))
        filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth']
        for f in filePaths:
            if os.path.exists(f):
                os.remove(f)

chicm-ms's avatar
chicm-ms committed
294
295
if __name__ == '__main__':
    main()