evaluation.py 6.54 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

Mingyao Li's avatar
Mingyao Li committed
4
import os
Yuge Zhang's avatar
Yuge Zhang committed
5
6
7
8
9
10
11
import argparse
import logging
import random

import numpy as np
import torch
import torch.nn as nn
12
13
14
15
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from nni.retiarii import fixed_arch
from nni.retiarii.oneshot.pytorch.utils import AverageMeterGroup
Yuge Zhang's avatar
Yuge Zhang committed
16
17
18
from torch.utils.tensorboard import SummaryWriter

from network import ShuffleNetV2OneShot
19
from utils import CrossEntropyLabelSmooth, accuracy, ToBGRTensor
Yuge Zhang's avatar
Yuge Zhang committed
20
21
22
23
24
25
26
27
28
29

logger = logging.getLogger("nni.spos.scratch")


def train(epoch, model, criterion, optimizer, loader, writer, args):
    model.train()
    meters = AverageMeterGroup()
    cur_lr = optimizer.param_groups[0]["lr"]

    for step, (x, y) in enumerate(loader):
30
        x, y = x.to('cuda'), y.to('cuda')
Yuge Zhang's avatar
Yuge Zhang committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        cur_step = len(loader) * epoch + step
        optimizer.zero_grad()
        logits = model(x)
        loss = criterion(logits, y)
        loss.backward()
        optimizer.step()

        metrics = accuracy(logits, y)
        metrics["loss"] = loss.item()
        meters.update(metrics)

        writer.add_scalar("lr", cur_lr, global_step=cur_step)
        writer.add_scalar("loss/train", loss.item(), global_step=cur_step)
        writer.add_scalar("acc1/train", metrics["acc1"], global_step=cur_step)
        writer.add_scalar("acc5/train", metrics["acc5"], global_step=cur_step)

        if step % args.log_frequency == 0 or step + 1 == len(loader):
            logger.info("Epoch [%d/%d] Step [%d/%d]  %s", epoch + 1,
                        args.epochs, step + 1, len(loader), meters)

    logger.info("Epoch %d training summary: %s", epoch + 1, meters)


def validate(epoch, model, criterion, loader, writer, args):
    model.eval()
    meters = AverageMeterGroup()
    with torch.no_grad():
        for step, (x, y) in enumerate(loader):
59
            x, y = x.to('cuda'), y.to('cuda')
Yuge Zhang's avatar
Yuge Zhang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            logits = model(x)
            loss = criterion(logits, y)
            metrics = accuracy(logits, y)
            metrics["loss"] = loss.item()
            meters.update(metrics)

            if step % args.log_frequency == 0 or step + 1 == len(loader):
                logger.info("Epoch [%d/%d] Validation Step [%d/%d]  %s", epoch + 1,
                            args.epochs, step + 1, len(loader), meters)

    writer.add_scalar("loss/test", meters.loss.avg, global_step=epoch)
    writer.add_scalar("acc1/test", meters.acc1.avg, global_step=epoch)
    writer.add_scalar("acc5/test", meters.acc5.avg, global_step=epoch)

    logger.info("Epoch %d validation: top1 = %f, top5 = %f", epoch + 1, meters.acc1.avg, meters.acc5.avg)


Mingyao Li's avatar
Mingyao Li committed
77
78
79
80
81
82
83
84
85
86
87
88
def dump_checkpoint(model, epoch, checkpoint_dir):
    if isinstance(model, nn.DataParallel):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    dest_path = os.path.join(checkpoint_dir, "epoch_{}.pth.tar".format(epoch))
    logger.info("Saving model to %s", dest_path)
    torch.save(state_dict, dest_path)


Yuge Zhang's avatar
Yuge Zhang committed
89
90
91
92
93
if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Training From Scratch")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--tb-dir", type=str, default="runs")
    parser.add_argument("--architecture", type=str, default="architecture_final.json")
Mingyao Li's avatar
Mingyao Li committed
94
    parser.add_argument("--workers", type=int, default=4)
Yuge Zhang's avatar
Yuge Zhang committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    parser.add_argument("--batch-size", type=int, default=1024)
    parser.add_argument("--epochs", type=int, default=240)
    parser.add_argument("--learning-rate", type=float, default=0.5)
    parser.add_argument("--momentum", type=float, default=0.9)
    parser.add_argument("--weight-decay", type=float, default=4E-5)
    parser.add_argument("--label-smooth", type=float, default=0.1)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--lr-decay", type=str, default="linear")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--spos-preprocessing", default=False, action="store_true")
    parser.add_argument("--label-smoothing", type=float, default=0.1)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

115
116
    with fixed_arch(args.architecture):
        model = ShuffleNetV2OneShot(affine=True)
Yuge Zhang's avatar
Yuge Zhang committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    model.cuda()
    if torch.cuda.device_count() > 1:  # exclude last gpu, saving for data preprocessing on gpu
        model = nn.DataParallel(model, device_ids=list(range(0, torch.cuda.device_count() - 1)))
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)
    if args.lr_decay == "linear":
        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                      lambda step: (1.0 - step / args.epochs)
                                                      if step <= args.epochs else 0,
                                                      last_epoch=-1)
    elif args.lr_decay == "cosine":
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, 1E-3)
    else:
        raise ValueError("'%s' not supported." % args.lr_decay)
    writer = SummaryWriter(log_dir=args.tb_dir)

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    if args.spos_preprocessing:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            transforms.RandomHorizontalFlip(0.5),
            ToBGRTensor(),
        ])
    else:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ToTensor()
        ])
    train_dataset = datasets.ImageNet(args.imagenet_dir, split='train', transform=trans)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers)
    val_dataset = datasets.ImageNet(args.imagenet_dir, split='val', transform=trans)
    valid_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.workers)                      
Yuge Zhang's avatar
Yuge Zhang committed
150
151
    for epoch in range(args.epochs):
        train(epoch, model, criterion, optimizer, train_loader, writer, args)
152
        validate(epoch, model, criterion, valid_loader, writer, args)
Yuge Zhang's avatar
Yuge Zhang committed
153
        scheduler.step()
Mingyao Li's avatar
Mingyao Li committed
154
        dump_checkpoint(model, epoch, "scratch_checkpoints")
Yuge Zhang's avatar
Yuge Zhang committed
155
156

    writer.close()