test_pruners.py 4.86 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from unittest import TestCase, main
from nni.compression.torch import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
    L2FilterPruner, AGP_Pruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner

def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg

prune_config = {
    'level': {
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, False),
            lambda model: validate_sparsity(model.fc, 0.5, False)
        ]
    },
    'agp': {
        'pruner_class': AGP_Pruner,
        'config_list': [{
            'initial_sparsity': 0,
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
            'op_types': ['default']
        }],
        'validators': []
    },
    'slim': {
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.bn1, 0.7, model.bias)
        ]
    },
    'fpgm': {
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l1': {
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l2': {
        'pruner_class': L2FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'mean_activation': {
        'pruner_class': ActivationMeanRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'apoz': {
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    }
}

class Model(nn.Module):
    def __init__(self, bias=True):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, padding=1, bias=bias)
        self.bn1 = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(8, 2, bias=bias)
        self.bias = bias
    def forward(self, x):
        return self.fc(self.pool(self.bn1(self.conv1(x))).view(x.size(0), -1))

def pruners_test(pruner_names=['level', 'agp', 'slim', 'fpgm', 'l1', 'l2', 'mean_activation', 'apoz'], bias=True):
    for pruner_name in pruner_names:
        print('testing {}...'.format(pruner_name))
        model = Model(bias=bias)
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config[pruner_name]['config_list']

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        pruner = prune_config[pruner_name]['pruner_class'](model, config_list, optimizer)
        pruner.compress()

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,1,28,28))

        for v in prune_config[pruner_name]['validators']:
            v(model)

    os.remove('./model_tmp.pth')
    os.remove('./mask_tmp.pth')
    os.remove('./onnx_tmp.pth')

class PrunerTestCase(TestCase):
    def test_pruners(self):
        pruners_test(bias=True)

    def test_pruners_no_bias(self):
        pruners_test(bias=False)

if __name__ == '__main__':
    main()