test_highlevel_apis.py 23.3 KB
Newer Older
1
2
import random
import unittest
3
from collections import Counter
4
5
6
7

import nni.retiarii.nn.pytorch as nn
import torch
import torch.nn.functional as F
Yuge Zhang's avatar
Yuge Zhang committed
8
from nni.retiarii import InvalidMutation, Sampler, basic_unit
9
10
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
11
12
13
14
from nni.retiarii.execution.python import _unpack_if_only_one
from nni.retiarii.nn.pytorch.mutator import process_inline_mutation, extract_mutation_from_pt_module
from nni.retiarii.serializer import model_wrapper
from nni.retiarii.utils import ContextStack
15
16


17
class EnumerateSampler(Sampler):
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


36
@basic_unit
37
38
39
40
41
42
43
44
45
46
47
48
49
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


50
class GraphIR(unittest.TestCase):
51
52
53
54
55
56
57
58
59
60
61

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

62
63
64
65
66
67
68
69
70
71
72
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

    def get_serializer(self):
        def dummy(cls):
            return cls

        return dummy

73
    def test_layer_choice(self):
74
        @self.get_serializer()
75
76
77
78
79
80
81
82
83
84
85
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

86
        model, mutators = self._get_model_with_mutators(Net())
87
        self.assertEqual(len(mutators), 1)
88
        mutator = mutators[0].bind_sampler(EnumerateSampler())
89
90
91
92
93
94
95
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def test_layer_choice_multiple(self):
        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            self.assertEqual(self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3)).size(),
                             torch.Size([1, i, 3, 3]))

114
    def test_input_choice(self):
115
        @self.get_serializer()
116
117
118
119
120
121
122
123
124
125
126
127
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

128
        model, mutators = self._get_model_with_mutators(Net())
129
        self.assertEqual(len(mutators), 1)
130
        mutator = mutators[0].bind_sampler(EnumerateSampler())
131
132
133
134
135
136
137
138
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
139
        @self.get_serializer()
140
141
142
143
144
145
146
147
148
149
150
151
152
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
153
            model, mutators = self._get_model_with_mutators(Net(reduction))
154
            self.assertEqual(len(mutators), 1)
155
            mutator = mutators[0].bind_sampler(EnumerateSampler())
156
157
158
159
160
161
162
163
164
165
166
167
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
168
        @self.get_serializer()
169
170
171
172
173
174
175
176
177
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

178
        model, mutators = self._get_model_with_mutators(Net())
179
        self.assertEqual(len(mutators), 1)
180
        mutator = mutators[0].bind_sampler(EnumerateSampler())
181
182
183
184
185
186
187
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

188
    def test_value_choice_as_parameter(self):
189
        @self.get_serializer()
190
191
192
193
194
195
196
197
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

198
        model, mutators = self._get_model_with_mutators(Net())
199
200
201
202
203
204
205
206
207
208
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
209
        @self.get_serializer()
210
211
212
213
214
215
216
217
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

218
        model, mutators = self._get_model_with_mutators(Net())
219
220
221
222
223
224
225
226
227
228
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
229
        @self.get_serializer()
230
231
232
233
234
235
236
237
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

238
        model, mutators = self._get_model_with_mutators(Net())
239
240
241
242
243
244
245
246
247
248
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 6, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
249
        @self.get_serializer()
250
251
252
253
254
255
256
257
258
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

259
        model, mutators = self._get_model_with_mutators(Net())
260
261
262
263
264
265
266
267
268
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

269
    def test_value_choice_in_functional(self):
270
        @self.get_serializer()
271
272
273
274
275
276
277
278
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

279
        model, mutators = self._get_model_with_mutators(Net())
280
        self.assertEqual(len(mutators), 1)
281
        mutator = mutators[0].bind_sampler(EnumerateSampler())
282
283
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
284
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
285
286
287
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

288
    def test_value_choice_in_layer_choice(self):
289
        @self.get_serializer()
290
291
292
293
294
295
296
297
298
299
300
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

301
        model, mutators = self._get_model_with_mutators(Net())
302
303
304
305
306
307
308
309
310
311
        self.assertEqual(len(mutators), 3)
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
            model_new = model
            for mutator in mutators:
                model_new = mutator.bind_sampler(sampler).apply(model_new)
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

312
    def test_shared(self):
313
        @self.get_serializer()
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

330
        model, mutators = self._get_model_with_mutators(Net())
331
332
333
334
335
336
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

337
        model, mutators = self._get_model_with_mutators(Net(shared=False))
338
339
340
341
342
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
343
            model_new = model
344
            for mutator in mutators:
345
                model_new = mutator.bind_sampler(sampler).apply(model_new)
346
347
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
348
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
349
350
351
352
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
353
354

    def test_valuechoice_access(self):
355
        @self.get_serializer()
356
357
358
359
360
361
362
363
364
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

365
        model, mutators = self._get_model_with_mutators(Net())
366
367
368
369
370
371
372
373
        self.assertEqual(len(mutators), 1)
        mutators[0].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[0].apply(model))(input).size(),
                         torch.Size([1, 6, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[0].apply(model))(input).size(),
                         torch.Size([1, 8, 1, 1]))

374
        @self.get_serializer()
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

389
        model, mutators = self._get_model_with_mutators(Net2())
390
391
392
393
394
395
        self.assertEqual(len(mutators), 1)
        mutators[0].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self._get_converted_pytorch_model(mutators[0].apply(model))(input)

    def test_valuechoice_access_functional(self):
396
        @self.get_serializer()
397
398
399
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
400
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
401
402
403
404

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

405
        model, mutators = self._get_model_with_mutators(Net())
406
407
408
409
410
411
412
413
414
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

    def test_valuechoice_access_functional_expression(self):
415
        @self.get_serializer()
416
417
418
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
419
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
420
421
422
423
424
425

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

426
        model, mutators = self._get_model_with_mutators(Net())
427
428
429
430
431
432
433
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        model3 = mutator.apply(model)
        self.assertTrue((self._get_converted_pytorch_model(model1)(torch.zeros(1, 16)) == 3).all())
        self.assertTrue((self._get_converted_pytorch_model(model2)(torch.zeros(1, 16)) == 4).all())
        self.assertTrue((self._get_converted_pytorch_model(model3)(torch.zeros(1, 16)) == 5).all())

    def test_cell(self):
        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

        @self.get_serializer()
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)], num_nodes=4)

            def forward(self, x):
                return self.cell([x])

        raw_model, mutators = self._get_model_with_mutators(Net2())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    def test_nasbench201_cell(self):
        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench201Cell([
                    lambda x, y: nn.Linear(x, y),
                    lambda x, y: nn.Linear(x, y, bias=False)
                ], 10, 16)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    def test_autoactivation(self):
        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.act = nn.AutoActivation()

            def forward(self, x):
                return self.act(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 10]))

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

class Python(GraphIR):
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    def get_serializer(self):
        return model_wrapper

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
    def test_valuechoice_access_functional(self): ...

    @unittest.skip
    def test_valuechoice_access_functional_expression(self): ...
Yuge Zhang's avatar
Yuge Zhang committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

    def test_nasbench101_cell(self):
        # this is only supported in python engine for now.
        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench101Cell([lambda x: nn.Linear(x, x), lambda x: nn.Linear(x, x, bias=False)],
                                               10, 16, lambda x, y: nn.Linear(x, y), max_num_nodes=5, max_num_edges=7)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())

        succeeded = 0
        sampler = RandomSampler()
        while succeeded <= 10:
            try:
                model = raw_model
                for mutator in mutators:
                    model = mutator.bind_sampler(sampler).apply(model)
                succeeded += 1
            except InvalidMutation:
                continue
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))