test_highlevel_apis.py 20.1 KB
Newer Older
1
2
import random
import unittest
3
from collections import Counter
4
5
6
7

import nni.retiarii.nn.pytorch as nn
import torch
import torch.nn.functional as F
8
from nni.retiarii import Sampler, basic_unit
9
10
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
11
12
13
14
from nni.retiarii.execution.python import _unpack_if_only_one
from nni.retiarii.nn.pytorch.mutator import process_inline_mutation, extract_mutation_from_pt_module
from nni.retiarii.serializer import model_wrapper
from nni.retiarii.utils import ContextStack
15
16


17
class EnumerateSampler(Sampler):
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


36
@basic_unit
37
38
39
40
41
42
43
44
45
46
47
48
49
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


50
class GraphIR(unittest.TestCase):
51
52
53
54
55
56
57
58
59
60
61

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

62
63
64
65
66
67
68
69
70
71
72
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

    def get_serializer(self):
        def dummy(cls):
            return cls

        return dummy

73
    def test_layer_choice(self):
74
        @self.get_serializer()
75
76
77
78
79
80
81
82
83
84
85
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

86
        model, mutators = self._get_model_with_mutators(Net())
87
        self.assertEqual(len(mutators), 1)
88
        mutator = mutators[0].bind_sampler(EnumerateSampler())
89
90
91
92
93
94
95
96
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_input_choice(self):
97
        @self.get_serializer()
98
99
100
101
102
103
104
105
106
107
108
109
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

110
        model, mutators = self._get_model_with_mutators(Net())
111
        self.assertEqual(len(mutators), 1)
112
        mutator = mutators[0].bind_sampler(EnumerateSampler())
113
114
115
116
117
118
119
120
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
121
        @self.get_serializer()
122
123
124
125
126
127
128
129
130
131
132
133
134
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
135
            model, mutators = self._get_model_with_mutators(Net(reduction))
136
            self.assertEqual(len(mutators), 1)
137
            mutator = mutators[0].bind_sampler(EnumerateSampler())
138
139
140
141
142
143
144
145
146
147
148
149
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
150
        @self.get_serializer()
151
152
153
154
155
156
157
158
159
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

160
        model, mutators = self._get_model_with_mutators(Net())
161
        self.assertEqual(len(mutators), 1)
162
        mutator = mutators[0].bind_sampler(EnumerateSampler())
163
164
165
166
167
168
169
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

170
    def test_value_choice_as_parameter(self):
171
        @self.get_serializer()
172
173
174
175
176
177
178
179
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

180
        model, mutators = self._get_model_with_mutators(Net())
181
182
183
184
185
186
187
188
189
190
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
191
        @self.get_serializer()
192
193
194
195
196
197
198
199
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

200
        model, mutators = self._get_model_with_mutators(Net())
201
202
203
204
205
206
207
208
209
210
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
211
        @self.get_serializer()
212
213
214
215
216
217
218
219
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

220
        model, mutators = self._get_model_with_mutators(Net())
221
222
223
224
225
226
227
228
229
230
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 6, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
231
        @self.get_serializer()
232
233
234
235
236
237
238
239
240
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

241
        model, mutators = self._get_model_with_mutators(Net())
242
243
244
245
246
247
248
249
250
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

251
    def test_value_choice_in_functional(self):
252
        @self.get_serializer()
253
254
255
256
257
258
259
260
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

261
        model, mutators = self._get_model_with_mutators(Net())
262
        self.assertEqual(len(mutators), 1)
263
        mutator = mutators[0].bind_sampler(EnumerateSampler())
264
265
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
266
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
267
268
269
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

270
    def test_value_choice_in_layer_choice(self):
271
        @self.get_serializer()
272
273
274
275
276
277
278
279
280
281
282
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

283
        model, mutators = self._get_model_with_mutators(Net())
284
285
286
287
288
289
290
291
292
293
        self.assertEqual(len(mutators), 3)
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
            model_new = model
            for mutator in mutators:
                model_new = mutator.bind_sampler(sampler).apply(model_new)
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

294
    def test_shared(self):
295
        @self.get_serializer()
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

312
        model, mutators = self._get_model_with_mutators(Net())
313
314
315
316
317
318
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

319
        model, mutators = self._get_model_with_mutators(Net(shared=False))
320
321
322
323
324
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
325
            model_new = model
326
            for mutator in mutators:
327
                model_new = mutator.bind_sampler(sampler).apply(model_new)
328
329
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
330
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
331
332
333
334
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
335
336

    def test_valuechoice_access(self):
337
        @self.get_serializer()
338
339
340
341
342
343
344
345
346
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

347
        model, mutators = self._get_model_with_mutators(Net())
348
349
350
351
352
353
354
355
        self.assertEqual(len(mutators), 1)
        mutators[0].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[0].apply(model))(input).size(),
                         torch.Size([1, 6, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[0].apply(model))(input).size(),
                         torch.Size([1, 8, 1, 1]))

356
        @self.get_serializer()
357
358
359
360
361
362
363
364
365
366
367
368
369
370
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

371
        model, mutators = self._get_model_with_mutators(Net2())
372
373
374
375
376
377
        self.assertEqual(len(mutators), 1)
        mutators[0].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self._get_converted_pytorch_model(mutators[0].apply(model))(input)

    def test_valuechoice_access_functional(self):
378
        @self.get_serializer()
379
380
381
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
382
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
383
384
385
386

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

387
        model, mutators = self._get_model_with_mutators(Net())
388
389
390
391
392
393
394
395
396
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

    def test_valuechoice_access_functional_expression(self):
397
        @self.get_serializer()
398
399
400
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
401
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
402
403
404
405
406
407

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

408
        model, mutators = self._get_model_with_mutators(Net())
409
410
411
412
413
414
415
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        model3 = mutator.apply(model)
        self.assertTrue((self._get_converted_pytorch_model(model1)(torch.zeros(1, 16)) == 3).all())
        self.assertTrue((self._get_converted_pytorch_model(model2)(torch.zeros(1, 16)) == 4).all())
        self.assertTrue((self._get_converted_pytorch_model(model3)(torch.zeros(1, 16)) == 5).all())

    def test_cell(self):
        @self.get_serializer()
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)],
                                    num_nodes=4, num_ops_per_node=2, num_predecessors=2, merge_op='all')

            def forward(self, x, y):
                return self.cell([x, y])

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

        @self.get_serializer()
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.Cell([nn.Linear(16, 16), nn.Linear(16, 16, bias=False)], num_nodes=4)

            def forward(self, x):
                return self.cell([x])

        raw_model, mutators = self._get_model_with_mutators(Net2())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

class Python(GraphIR):
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    def get_serializer(self):
        return model_wrapper

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
    def test_valuechoice_access_functional(self): ...

    @unittest.skip
    def test_valuechoice_access_functional_expression(self): ...