"tools/vscode:/vscode.git/clone" did not exist on "13d14c66a591d741bda68c65e4fa996f9dd9753c"
test_dedup_input.py 2.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import json
import os
import sys
import threading
import unittest
import logging
import time

from nni.retiarii.execution.cgo_engine import CGOExecutionEngine
from nni.retiarii.execution.logical_optimizer.logical_plan import LogicalPlan
from nni.retiarii.execution.logical_optimizer.opt_dedup_input import DedupInputOptimizer
from nni.retiarii.codegen import model_to_pytorch_script
from nni.retiarii import Model, Node

from nni.retiarii import Model, submit_models
from nni.retiarii.codegen import model_to_pytorch_script
from nni.retiarii.integration import RetiariiAdvisor
from nni.retiarii.trainer import PyTorchImageClassificationTrainer, PyTorchMultiModelTrainer
from nni.retiarii.utils import import_

def _load_mnist(n_models: int = 1):
    with open('converted_mnist_pytorch.json') as f:
        mnist_model = Model._load(json.load(f))
    if n_models == 1:
        return mnist_model
    else:
        models = [mnist_model]
        for i in range(n_models-1):
            models.append(mnist_model.fork())
        return models

class DedupInputTest(unittest.TestCase):
    def _build_logical_with_mnist(self, n_models : int):
        lp = LogicalPlan()
        models = _load_mnist(n_models = n_models)
        for m in models:
            lp.add_model(m)
        return lp, models

    def _test_add_model(self):
        lp, models = self._build_logical_with_mnist(3)
        for node in lp.logical_graph.hidden_nodes:
            old_nodes = [ m.root_graph.get_node_by_id(node.id) for m in models]
            
            self.assertTrue(any([old_nodes[0].__repr__() == Node.__repr__(x) for x in old_nodes]))

    def test_dedup_input(self):
        os.environ['CGO'] = 'true'
        lp, models = self._build_logical_with_mnist(3)
        opt = DedupInputOptimizer()
        opt.convert(lp)
        with open('dedup_logical_graph.json' , 'r') as fp:
            correct_dump = fp.readlines()
        lp_dump = lp.logical_graph._dump()
        
        self.assertTrue(correct_dump[0] == json.dumps(lp_dump))
        
        anything = lambda: None
        advisor = RetiariiAdvisor(anything)
        cgo = CGOExecutionEngine()

        phy_models = cgo._assemble(lp)
        self.assertTrue(len(phy_models) == 1)
        # logging.info(phy_models[0][0]._dump())
        # script=model_to_pytorch_script(phy_models[0][0], placement = phy_models[0][1])
        # logging.info(script)
        # with open('generated/debug_dedup_input.py', 'w') as fp:
        #     fp.write(script)
        # sys.path.insert(0, 'generated')
        # multi_model = import_('debug_dedup_input.logical_0')
        # trainer = PyTorchMultiModelTrainer(
        #     multi_model(), phy_models[0][0].training_config.kwargs
        # )
        # trainer.fit()

        advisor.stopping = True
        advisor.default_worker.join()
        advisor.assessor_worker.join()

if __name__ == '__main__':
    #CGOEngineTest().test_dedup_input()
    #CGOEngineTest().test_submit_models()
    unittest.main()