util.py 5.64 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# Written by Hao Du and Houwen Peng
# email: haodu8-c@my.cityu.edu.hk and houwen.peng@microsoft.com

import sys
DU Hao's avatar
DU Hao committed
7
8
import logging
import torch
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import torch.nn as nn

from torch import optim as optim
from thop import profile, clever_format

from timm.utils import *

from lib.config import cfg


def get_path_acc(model, path, val_loader, args, val_iters=50):
    prec1_m = AverageMeter()
    prec5_m = AverageMeter()
    with torch.no_grad():
        for batch_idx, (input, target) in enumerate(val_loader):
            if batch_idx >= val_iters:
                break
            if not args.prefetcher:
                input = input.cuda()
                target = target.cuda()

            output = model(input, path)
            if isinstance(output, (tuple, list)):
                output = output[0]

            # augmentation reduction
            reduce_factor = args.tta
            if reduce_factor > 1:
                output = output.unfold(
                    0,
                    reduce_factor,
                    reduce_factor).mean(
                    dim=2)
                target = target[0:target.size(0):reduce_factor]

            prec1, prec5 = accuracy(output, target, topk=(1, 5))

            torch.cuda.synchronize()

            prec1_m.update(prec1.item(), output.size(0))
            prec5_m.update(prec5.item(), output.size(0))

    return (prec1_m.avg, prec5_m.avg)


def get_logger(file_path):
    """ Make python logger """
    log_format = '%(asctime)s | %(message)s'
    logging.basicConfig(stream=sys.stdout, level=logging.INFO,
                        format=log_format, datefmt='%m/%d %I:%M:%S %p')
    logger = logging.getLogger('')

    formatter = logging.Formatter(log_format, datefmt='%m/%d %I:%M:%S %p')
    file_handler = logging.FileHandler(file_path)
    file_handler.setFormatter(formatter)

    logger.addHandler(file_handler)

    return logger


def add_weight_decay_supernet(model, args, weight_decay=1e-5, skip_list=()):
    decay = []
    no_decay = []
    meta_layer_no_decay = []
    meta_layer_decay = []
    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if len(param.shape) == 1 or name.endswith(
                ".bias") or name in skip_list:
            if 'meta_layer' in name:
                meta_layer_no_decay.append(param)
            else:
                no_decay.append(param)
        else:
            if 'meta_layer' in name:
                meta_layer_decay.append(param)
            else:
                decay.append(param)
    return [
        {'params': no_decay, 'weight_decay': 0., 'lr': args.lr},
        {'params': decay, 'weight_decay': weight_decay, 'lr': args.lr},
        {'params': meta_layer_no_decay, 'weight_decay': 0., 'lr': args.meta_lr},
        {'params': meta_layer_decay, 'weight_decay': 0, 'lr': args.meta_lr},
    ]


def create_optimizer_supernet(args, model, has_apex, filter_bias_and_bn=True):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay
    if 'adamw' in opt_lower or 'radam' in opt_lower:
        weight_decay /= args.lr
    if weight_decay and filter_bias_and_bn:
        parameters = add_weight_decay_supernet(model, args, weight_decay)
        weight_decay = 0.
    else:
        parameters = model.parameters()

    if 'fused' in opt_lower:
        assert has_apex and torch.cuda.is_available(
        ), 'APEX and CUDA required for fused optimizers'

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'sgd' or opt_lower == 'nesterov':
        optimizer = optim.SGD(
            parameters,
            momentum=args.momentum,
            weight_decay=weight_decay,
            nesterov=True)
    elif opt_lower == 'momentum':
        optimizer = optim.SGD(
            parameters,
            momentum=args.momentum,
            weight_decay=weight_decay,
            nesterov=False)
    elif opt_lower == 'adam':
        optimizer = optim.Adam(
            parameters, weight_decay=weight_decay, eps=args.opt_eps)
    else:
        assert False and "Invalid optimizer"
        raise ValueError

    return optimizer


def convert_lowercase(cfg):
    keys = cfg.keys()
    lowercase_keys = [key.lower() for key in keys]
    values = [cfg.get(key) for key in keys]
    for lowercase_key, value in zip(lowercase_keys, values):
        cfg.setdefault(lowercase_key, value)
    return cfg


def parse_config_args(exp_name):
    parser = argparse.ArgumentParser(description=exp_name)
    parser.add_argument(
        '--cfg',
        type=str,
        default='../experiments/workspace/retrain/retrain.yaml',
        help='configuration of cream')
    parser.add_argument('--local_rank', type=int, default=0,
                        help='local_rank')
    args = parser.parse_args()

    cfg.merge_from_file(args.cfg)
    converted_cfg = convert_lowercase(cfg)

    return args, converted_cfg


def get_model_flops_params(model, input_size=(1, 3, 224, 224)):
    input = torch.randn(input_size)
    macs, params = profile(deepcopy(model), inputs=(input,), verbose=False)
    macs, params = clever_format([macs, params], "%.3f")
    return macs, params


def cross_entropy_loss_with_soft_target(pred, soft_target):
    logsoftmax = nn.LogSoftmax()
    return torch.mean(torch.sum(- soft_target * logsoftmax(pred), 1))


def create_supernet_scheduler(cfg, optimizer):
    ITERS = cfg.EPOCHS * \
        (1280000 / (cfg.NUM_GPU * cfg.DATASET.BATCH_SIZE))
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda step: (
        cfg.LR - step / ITERS) if step <= ITERS else 0, last_epoch=-1)
    return lr_scheduler, cfg.EPOCHS