howto_2_CustomizedTuner.md 3.85 KB
Newer Older
1
# **How To** - Customize Your Own Tuner
QuanluZhang's avatar
QuanluZhang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

*Tuner receive result from Trial as a matric to evaluate the performance of a specific parameters/architecture configure. And tuner send next hyper-parameter or architecture configure to Trial.*

So, if user want to implement a customized Tuner, she/he only need to:

1) Inherit a tuner of a base Tuner class
2) Implement receive_trial_result and generate_parameter function
3) Write a script to run Tuner

Here ia an example:

**1) Inherit a tuner of a base Tuner class**
```python
from nni.tuner import Tuner

class CustomizedTuner(Tuner):
    def __init__(self, ...):
        ...
```

**2) Implement receive_trial_result and generate_parameter function**
```python
from nni.tuner import Tuner

class CustomizedTuner(Tuner):
    def __init__(self, ...):
        ...
    
30
    def receive_trial_result(self, parameter_id, parameters, value):
QuanluZhang's avatar
QuanluZhang committed
31
32
33
34
    '''
    Record an observation of the objective function and Train
    parameter_id: int
    parameters: object created by 'generate_parameters()'
35
    value: final metrics of the trial, including reward
QuanluZhang's avatar
QuanluZhang committed
36
37
38
39
40
41
42
43
44
45
46
47
48
    '''
    # your code implements here.
    ...
    
    def generate_parameters(self, parameter_id):
    '''
    Returns a set of trial (hyper-)parameters, as a serializable object
    parameter_id: int
    '''
    # your code implements here.
    return your_parameters
    ...
```
49
```receive_trial_result``` will receive ```the parameter_id, parameters, value``` as parameters input. Also, Tuner will receive the ```value``` object are exactly same value that Trial send.
QuanluZhang's avatar
QuanluZhang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63

The ```your_parameters``` return from ```generate_parameters``` function, will be package as json object by NNI SDK. NNI SDK will unpack json object so the Trial will receive the exact same ```your_parameters``` from Tuner.

For example:
If the you implement the ```generate_parameters``` like this:
```python
    def generate_parameters(self, parameter_id):
        '''
        Returns a set of trial (hyper-)parameters, as a serializable object
        parameter_id: int
        '''
        # your code implements here.
        return {"dropout": 0.3, "learning_rate": 0.4}
```
chicm-ms's avatar
chicm-ms committed
64
 It means your Tuner will always generate parameters ```{"dropout": 0.3, "learning_rate": 0.4}```. Then Trial will receive ```{"dropout": 0.3, "learning_rate": 0.4}``` by calling API ```nni.get_next_parameter()```. Once the trial ends with a result (normally some kind of metrics), it can send the result to Tuner by calling API ```nni.report_final_result()```, for example ```nni.report_final_result(0.93)```. Then your Tuner's ```receive_trial_result``` function will receied the result like:
QuanluZhang's avatar
QuanluZhang committed
65
66
67
```
parameter_id = 82347
parameters = {"dropout": 0.3, "learning_rate": 0.4}
68
value = 0.93
QuanluZhang's avatar
QuanluZhang committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
```

**Note that** if you want to access a file (e.g., ```data.txt```) in the directory of your own tuner, you cannot use ```open('data.txt', 'r')```. Instead, you should use the following:
```
_pwd = os.path.dirname(__file__)
_fd = open(os.path.join(_pwd, 'data.txt'), 'r')
```
This is because your tuner is not executed in the directory of your tuner (i.e., ```pwd``` is not the directory of your own tuner).

**3) Configure your customized tuner in experiment yaml config file**

NNI needs to locate your customized tuner class and instantiate the class, so you need to specify the location of the customized tuner class and pass literal values as parameters to the \_\_init__ constructor.
```yaml
tuner:
  codeDir: /home/abc/mytuner
  classFileName: my_customized_tuner.py
  className: CustomizedTuner
  # Any parameter need to pass to your tuner class __init__ constructor
  # can be specified in this optional classArgs field, for example 
  classArgs:
    arg1: value1
```

More detail example you could see:
> * [evolution-tuner](../src/sdk/pynni/nni/evolution_tuner)
> * [hyperopt-tuner](../src/sdk/pynni/nni/hyperopt_tuner)
> * [evolution-based-customized-tuner](../examples/tuners/ga_customer_tuner)