retrain.py 6.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import json
import logging
import os
import time
from argparse import ArgumentParser

import torch
import torch.nn as nn

import apex  # pylint: disable=import-error
import datasets
import utils
from apex.parallel import DistributedDataParallel  # pylint: disable=import-error
from config import RetrainConfig
from datasets.cifar import get_augment_datasets
from model import Model
from nni.nas.pytorch.fixed import apply_fixed_architecture
from nni.nas.pytorch.utils import AverageMeterGroup


def train(logger, config, train_loader, model, optimizer, criterion, epoch, main_proc):
    meters = AverageMeterGroup()
    cur_lr = optimizer.param_groups[0]["lr"]
    if main_proc:
        logger.info("Epoch %d LR %.6f", epoch, cur_lr)

    model.train()
    for step, (x, y) in enumerate(train_loader):
        x, y = x.cuda(non_blocking=True), y.cuda(non_blocking=True)
        optimizer.zero_grad()
        logits, aux_logits = model(x)
        loss = criterion(logits, y)
        if config.aux_weight > 0.:
            loss += config.aux_weight * criterion(aux_logits, y)
        loss.backward()
        nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
        optimizer.step()

        prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
        metrics = {"prec1": prec1, "prec5": prec5, "loss": loss}
        metrics = utils.reduce_metrics(metrics, config.distributed)
        meters.update(metrics)

        if main_proc and (step % config.log_frequency == 0 or step + 1 == len(train_loader)):
            logger.info("Epoch [%d/%d] Step [%d/%d]  %s", epoch + 1, config.epochs, step + 1, len(train_loader), meters)

    if main_proc:
        logger.info("Train: [%d/%d] Final Prec@1 %.4f Prec@5 %.4f", epoch + 1, config.epochs, meters.prec1.avg, meters.prec5.avg)


def validate(logger, config, valid_loader, model, criterion, epoch, main_proc):
    meters = AverageMeterGroup()
    model.eval()

    with torch.no_grad():
        for step, (x, y) in enumerate(valid_loader):
            x, y = x.cuda(non_blocking=True), y.cuda(non_blocking=True)
            logits, _ = model(x)
            loss = criterion(logits, y)
            prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
            metrics = {"prec1": prec1, "prec5": prec5, "loss": loss}
            metrics = utils.reduce_metrics(metrics, config.distributed)
            meters.update(metrics)

            if main_proc and (step % config.log_frequency == 0 or step + 1 == len(valid_loader)):
                logger.info("Epoch [%d/%d] Step [%d/%d]  %s", epoch + 1, config.epochs, step + 1, len(valid_loader), meters)

    if main_proc:
        logger.info("Train: [%d/%d] Final Prec@1 %.4f Prec@5 %.4f", epoch + 1, config.epochs, meters.prec1.avg, meters.prec5.avg)
    return meters.prec1.avg, meters.prec5.avg


def main():
    config = RetrainConfig()
    main_proc = not config.distributed or config.local_rank == 0
    if config.distributed:
        torch.cuda.set_device(config.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method=config.dist_url,
                                             rank=config.local_rank, world_size=config.world_size)
    if main_proc:
        os.makedirs(config.output_path, exist_ok=True)
    if config.distributed:
        torch.distributed.barrier()
    logger = utils.get_logger(os.path.join(config.output_path, 'search.log'))
    if main_proc:
        config.print_params(logger.info)
    utils.reset_seed(config.seed)

    loaders, samplers = get_augment_datasets(config)
    train_loader, valid_loader = loaders
    train_sampler, valid_sampler = samplers

    model = Model(config.dataset, config.layers, in_channels=config.input_channels, channels=config.init_channels, retrain=True).cuda()
    if config.label_smooth > 0:
        criterion = utils.CrossEntropyLabelSmooth(config.n_classes, config.label_smooth)
    else:
        criterion = nn.CrossEntropyLoss()

    fixed_arc_path = os.path.join(config.output_path, config.arc_checkpoint)
    with open(fixed_arc_path, "r") as f:
        fixed_arc = json.load(f)
    fixed_arc = utils.encode_tensor(fixed_arc, torch.device("cuda"))
    genotypes = utils.parse_results(fixed_arc, n_nodes=4)
    genotypes_dict = {i: genotypes for i in range(3)}
    apply_fixed_architecture(model, fixed_arc_path)
    param_size = utils.param_size(model, criterion, [3, 32, 32] if 'cifar' in config.dataset else [3, 224, 224])

    if main_proc:
        logger.info("Param size: %.6f", param_size)
        logger.info("Genotype: %s", genotypes)

    # change training hyper parameters according to cell type
    if 'cifar' in config.dataset:
        if param_size < 3.0:
            config.weight_decay = 3e-4
            config.drop_path_prob = 0.2
        elif 3.0 < param_size < 3.5:
            config.weight_decay = 3e-4
            config.drop_path_prob = 0.3
        else:
            config.weight_decay = 5e-4
            config.drop_path_prob = 0.3

    if config.distributed:
        apex.parallel.convert_syncbn_model(model)
        model = DistributedDataParallel(model, delay_allreduce=True)

    optimizer = torch.optim.SGD(model.parameters(), config.lr, momentum=config.momentum, weight_decay=config.weight_decay)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs, eta_min=1E-6)

    best_top1 = best_top5 = 0.
    for epoch in range(config.epochs):
        drop_prob = config.drop_path_prob * epoch / config.epochs
        if config.distributed:
            model.module.drop_path_prob(drop_prob)
        else:
            model.drop_path_prob(drop_prob)
        # training
        if config.distributed:
            train_sampler.set_epoch(epoch)
        train(logger, config, train_loader, model, optimizer, criterion, epoch, main_proc)

        # validation
        top1, top5 = validate(logger, config, valid_loader, model, criterion, epoch, main_proc)
        best_top1 = max(best_top1, top1)
        best_top5 = max(best_top5, top5)
        lr_scheduler.step()

    logger.info("Final best Prec@1 = %.4f Prec@5 = %.4f", best_top1, best_top5)


if __name__ == "__main__":
    main()