imagenet.py 3.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os

import numpy as np
import torch
import torchvision.datasets as dset
import torchvision.transforms as transforms

from datasets.data_utils import ImageNetPolicy
from datasets.data_utils import SubsetDistributedSampler


def _imagenet_dataset(config):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    train_dir = os.path.join(config.data_dir, "train")
    test_dir = os.path.join(config.data_dir, "val")
    if hasattr(config, "use_aa") and config.use_aa:
        train_data = dset.ImageFolder(
            train_dir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                ImageNetPolicy(),
                transforms.ToTensor(),
                normalize,
            ]))
    else:
        train_data = dset.ImageFolder(
            train_dir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ColorJitter(
                    brightness=0.4,
                    contrast=0.4,
                    saturation=0.4,
                    hue=0.2),
                transforms.ToTensor(),
                normalize,
            ]))

    test_data = dset.ImageFolder(
        test_dir,
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ]))

    return train_data, test_data


def get_search_datasets(config):
    train_data, test_data = _imagenet_dataset(config)
    num_train = len(train_data)
    indices = list(range(num_train))
    split_mid = int(np.floor(0.5 * num_train))

    if config.distributed:
        train_sampler = SubsetDistributedSampler(train_data, indices[:split_mid])
        valid_sampler = SubsetDistributedSampler(train_data, indices[split_mid:num_train])
    else:
        train_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[:split_mid])
        valid_sampler = torch.utils.data.sampler.SubsetRandomSampler(indices[split_mid:num_train])

    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=config.batch_size,
        sampler=train_sampler,
        pin_memory=True, num_workers=config.workers)

    valid_loader = torch.utils.data.DataLoader(
        train_data, batch_size=config.batch_size,
        sampler=valid_sampler,
        pin_memory=True, num_workers=config.workers)

    return [train_loader, valid_loader], [train_sampler, valid_sampler]


def get_augment_datasets(config):
    train_data, test_data = _imagenet_dataset(config)
    if config.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_data)
        test_sampler = torch.utils.data.distributed.DistributedSampler(test_data)
    else:
        train_sampler = test_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=config.batch_size,
        sampler=train_sampler,
        pin_memory=True, num_workers=config.workers)

    test_loader = torch.utils.data.DataLoader(
        test_data, batch_size=config.batch_size,
        sampler=test_sampler,
        pin_memory=True, num_workers=config.workers)

    return [train_loader, test_loader], [train_sampler, test_sampler]