scratch.py 5.96 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

Mingyao Li's avatar
Mingyao Li committed
4
import os
Yuge Zhang's avatar
Yuge Zhang committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
import logging
import random

import numpy as np
import torch
import torch.nn as nn
from dataloader import get_imagenet_iter_dali
from nni.nas.pytorch.fixed import apply_fixed_architecture
from nni.nas.pytorch.utils import AverageMeterGroup
from torch.utils.tensorboard import SummaryWriter

from network import ShuffleNetV2OneShot
from utils import CrossEntropyLabelSmooth, accuracy

logger = logging.getLogger("nni.spos.scratch")


def train(epoch, model, criterion, optimizer, loader, writer, args):
    model.train()
    meters = AverageMeterGroup()
    cur_lr = optimizer.param_groups[0]["lr"]

    for step, (x, y) in enumerate(loader):
        cur_step = len(loader) * epoch + step
        optimizer.zero_grad()
        logits = model(x)
        loss = criterion(logits, y)
        loss.backward()
        optimizer.step()

        metrics = accuracy(logits, y)
        metrics["loss"] = loss.item()
        meters.update(metrics)

        writer.add_scalar("lr", cur_lr, global_step=cur_step)
        writer.add_scalar("loss/train", loss.item(), global_step=cur_step)
        writer.add_scalar("acc1/train", metrics["acc1"], global_step=cur_step)
        writer.add_scalar("acc5/train", metrics["acc5"], global_step=cur_step)

        if step % args.log_frequency == 0 or step + 1 == len(loader):
            logger.info("Epoch [%d/%d] Step [%d/%d]  %s", epoch + 1,
                        args.epochs, step + 1, len(loader), meters)

    logger.info("Epoch %d training summary: %s", epoch + 1, meters)


def validate(epoch, model, criterion, loader, writer, args):
    model.eval()
    meters = AverageMeterGroup()
    with torch.no_grad():
        for step, (x, y) in enumerate(loader):
            logits = model(x)
            loss = criterion(logits, y)
            metrics = accuracy(logits, y)
            metrics["loss"] = loss.item()
            meters.update(metrics)

            if step % args.log_frequency == 0 or step + 1 == len(loader):
                logger.info("Epoch [%d/%d] Validation Step [%d/%d]  %s", epoch + 1,
                            args.epochs, step + 1, len(loader), meters)

    writer.add_scalar("loss/test", meters.loss.avg, global_step=epoch)
    writer.add_scalar("acc1/test", meters.acc1.avg, global_step=epoch)
    writer.add_scalar("acc5/test", meters.acc5.avg, global_step=epoch)

    logger.info("Epoch %d validation: top1 = %f, top5 = %f", epoch + 1, meters.acc1.avg, meters.acc5.avg)


Mingyao Li's avatar
Mingyao Li committed
74
75
76
77
78
79
80
81
82
83
84
85
def dump_checkpoint(model, epoch, checkpoint_dir):
    if isinstance(model, nn.DataParallel):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    dest_path = os.path.join(checkpoint_dir, "epoch_{}.pth.tar".format(epoch))
    logger.info("Saving model to %s", dest_path)
    torch.save(state_dict, dest_path)


Yuge Zhang's avatar
Yuge Zhang committed
86
87
88
89
90
if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Training From Scratch")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--tb-dir", type=str, default="runs")
    parser.add_argument("--architecture", type=str, default="architecture_final.json")
Mingyao Li's avatar
Mingyao Li committed
91
    parser.add_argument("--workers", type=int, default=4)
Yuge Zhang's avatar
Yuge Zhang committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    parser.add_argument("--batch-size", type=int, default=1024)
    parser.add_argument("--epochs", type=int, default=240)
    parser.add_argument("--learning-rate", type=float, default=0.5)
    parser.add_argument("--momentum", type=float, default=0.9)
    parser.add_argument("--weight-decay", type=float, default=4E-5)
    parser.add_argument("--label-smooth", type=float, default=0.1)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--lr-decay", type=str, default="linear")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--spos-preprocessing", default=False, action="store_true")
    parser.add_argument("--label-smoothing", type=float, default=0.1)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

Mingyao Li's avatar
Mingyao Li committed
112
    model = ShuffleNetV2OneShot(affine=True)
Yuge Zhang's avatar
Yuge Zhang committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    model.cuda()
    apply_fixed_architecture(model, args.architecture)
    if torch.cuda.device_count() > 1:  # exclude last gpu, saving for data preprocessing on gpu
        model = nn.DataParallel(model, device_ids=list(range(0, torch.cuda.device_count() - 1)))
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)
    if args.lr_decay == "linear":
        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                      lambda step: (1.0 - step / args.epochs)
                                                      if step <= args.epochs else 0,
                                                      last_epoch=-1)
    elif args.lr_decay == "cosine":
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, 1E-3)
    else:
        raise ValueError("'%s' not supported." % args.lr_decay)
    writer = SummaryWriter(log_dir=args.tb_dir)

    train_loader = get_imagenet_iter_dali("train", args.imagenet_dir, args.batch_size, args.workers,
                                          spos_preprocessing=args.spos_preprocessing)
    val_loader = get_imagenet_iter_dali("val", args.imagenet_dir, args.batch_size, args.workers,
                                        spos_preprocessing=args.spos_preprocessing)

    for epoch in range(args.epochs):
        train(epoch, model, criterion, optimizer, train_loader, writer, args)
        validate(epoch, model, criterion, val_loader, writer, args)
        scheduler.step()
Mingyao Li's avatar
Mingyao Li committed
140
        dump_checkpoint(model, epoch, "scratch_checkpoints")
Yuge Zhang's avatar
Yuge Zhang committed
141
142

    writer.close()