network.py 6.28 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import pickle
import re

import torch
import torch.nn as nn
from nni.nas.pytorch import mutables

from blocks import ShuffleNetBlock, ShuffleXceptionBlock


class ShuffleNetV2OneShot(nn.Module):
    block_keys = [
        'shufflenet_3x3',
        'shufflenet_5x5',
        'shufflenet_7x7',
        'xception_3x3',
    ]

    def __init__(self, input_size=224, first_conv_channels=16, last_conv_channels=1024, n_classes=1000,
Mingyao Li's avatar
Mingyao Li committed
24
                 op_flops_path="./data/op_flops_dict.pkl", affine=False):
Yuge Zhang's avatar
Yuge Zhang committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
        super().__init__()

        assert input_size % 32 == 0
        with open(os.path.join(os.path.dirname(__file__), op_flops_path), "rb") as fp:
            self._op_flops_dict = pickle.load(fp)

        self.stage_blocks = [4, 4, 8, 4]
        self.stage_channels = [64, 160, 320, 640]
        self._parsed_flops = dict()
        self._input_size = input_size
        self._feature_map_size = input_size
        self._first_conv_channels = first_conv_channels
        self._last_conv_channels = last_conv_channels
        self._n_classes = n_classes
Mingyao Li's avatar
Mingyao Li committed
39
        self._affine = affine
Yuge Zhang's avatar
Yuge Zhang committed
40
41
42
43

        # building first layer
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, first_conv_channels, 3, 2, 1, bias=False),
Mingyao Li's avatar
Mingyao Li committed
44
            nn.BatchNorm2d(first_conv_channels, affine=affine),
Yuge Zhang's avatar
Yuge Zhang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
            nn.ReLU(inplace=True),
        )
        self._feature_map_size //= 2

        p_channels = first_conv_channels
        features = []
        for num_blocks, channels in zip(self.stage_blocks, self.stage_channels):
            features.extend(self._make_blocks(num_blocks, p_channels, channels))
            p_channels = channels
        self.features = nn.Sequential(*features)

        self.conv_last = nn.Sequential(
            nn.Conv2d(p_channels, last_conv_channels, 1, 1, 0, bias=False),
Mingyao Li's avatar
Mingyao Li committed
58
            nn.BatchNorm2d(last_conv_channels, affine=affine),
Yuge Zhang's avatar
Yuge Zhang committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AvgPool2d(self._feature_map_size)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, n_classes, bias=False),
        )

        self._initialize_weights()

    def _make_blocks(self, blocks, in_channels, channels):
        result = []
        for i in range(blocks):
            stride = 2 if i == 0 else 1
            inp = in_channels if i == 0 else channels
            oup = channels

            base_mid_channels = channels // 2
            mid_channels = int(base_mid_channels)  # prepare for scale
            choice_block = mutables.LayerChoice([
Mingyao Li's avatar
Mingyao Li committed
79
80
81
82
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=3, stride=stride, affine=self._affine),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=5, stride=stride, affine=self._affine),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=7, stride=stride, affine=self._affine),
                ShuffleXceptionBlock(inp, oup, mid_channels=mid_channels, stride=stride, affine=self._affine)
Yuge Zhang's avatar
Yuge Zhang committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            ])
            result.append(choice_block)

            # find the corresponding flops
            flop_key = (inp, oup, mid_channels, self._feature_map_size, self._feature_map_size, stride)
            self._parsed_flops[choice_block.key] = [
                self._op_flops_dict["{}_stride_{}".format(k, stride)][flop_key] for k in self.block_keys
            ]
            if stride == 2:
                self._feature_map_size //= 2
        return result

    def forward(self, x):
        bs = x.size(0)
        x = self.first_conv(x)
        x = self.features(x)
        x = self.conv_last(x)
        x = self.globalpool(x)

        x = self.dropout(x)
        x = x.contiguous().view(bs, -1)
        x = self.classifier(x)
        return x

    def get_candidate_flops(self, candidate):
        conv1_flops = self._op_flops_dict["conv1"][(3, self._first_conv_channels,
                                                    self._input_size, self._input_size, 2)]
        # Should use `last_conv_channels` here, but megvii insists that it's `n_classes`. Keeping it.
        # https://github.com/megvii-model/SinglePathOneShot/blob/36eed6cf083497ffa9cfe7b8da25bb0b6ba5a452/src/Supernet/flops.py#L313
        rest_flops = self._op_flops_dict["rest_operation"][(self.stage_channels[-1], self._n_classes,
                                                            self._feature_map_size, self._feature_map_size, 1)]
        total_flops = conv1_flops + rest_flops
        for k, m in candidate.items():
            parsed_flops_dict = self._parsed_flops[k]
            if isinstance(m, dict):  # to be compatible with classical nas format
                total_flops += parsed_flops_dict[m["_idx"]]
            else:
                total_flops += parsed_flops_dict[torch.max(m, 0)[1]]
        return total_flops

    def _initialize_weights(self):
        for name, m in self.named_modules():
            if isinstance(m, nn.Conv2d):
                if 'first' in name:
                    nn.init.normal_(m.weight, 0, 0.01)
                else:
                    nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                if m.weight is not None:
                    nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0.0001)
                nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.BatchNorm1d):
                nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0.0001)
                nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)


def load_and_parse_state_dict(filepath="./data/checkpoint-150000.pth.tar"):
    checkpoint = torch.load(filepath, map_location=torch.device("cpu"))
Yuge Zhang's avatar
Yuge Zhang committed
151
152
    if "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]
Yuge Zhang's avatar
Yuge Zhang committed
153
    result = dict()
Yuge Zhang's avatar
Yuge Zhang committed
154
    for k, v in checkpoint.items():
Yuge Zhang's avatar
Yuge Zhang committed
155
156
157
158
        if k.startswith("module."):
            k = k[len("module."):]
        result[k] = v
    return result